Circadian clocks are influenced by social interactions in a variety of species, but little is known about the sensory mechanisms underlying these effects. We investigated whether social cues could reset circadian rhythms in Drosophila melanogaster by addressing two questions: Is there a social influence on circadian timing? If so, then how is that influence communicated? The experiments show that in a social context Drosophila transmit and receive cues that influence circadian time and that these cues are likely olfactory.
View Article and Find Full Text PDFThe cacophony (cac) locus of Drosophila melanogaster, which encodes a calcium-channel subunit, has been mutated to cause courtship-song defects or abnormal responses to visual stimuli. However, the most recently isolated cac mutant was identified as an enhancer of a comatose mutation's effects on general locomotion. We analyzed the cac(TS2) mutation in terms of its intragenic molecular change and its effects on behaviors more complex than the fly's elementary ability to move.
View Article and Find Full Text PDFBackground: Previously, we reported effects of the cry(b) mutation on circadian rhythms in period and timeless gene expression within isolated peripheral Drosophila tissues. We relied on luciferase activity driven by the respective regulatory genomic elements to provide real-time reporting of cycling gene expression. Subsequently, we developed a tool kit for the analysis of behavioral and molecular cycles.
View Article and Find Full Text PDFBackground: Circadian clocks are biological oscillators that regulate molecular, physiological, and behavioral rhythms in a wide variety of organisms. While behavioral rhythms are typically monitored over many cycles, a similar approach to molecular rhythms was not possible until recently; the advent of real-time analysis using transgenic reporters now permits the observations of molecular rhythms over many cycles as well. This development suggests that new details about the relationship between molecular and behavioral rhythms may be revealed.
View Article and Find Full Text PDF