Publications by authors named "Pablo Eugui"

Cataracts are the leading cause of blindness worldwide. Here we propose optical coherence tomography (OCT) as a quantitative method for investigating cataracts. OCT provides volumetric and non-invasive access to the lens and makes it possible to rapidly observe the formation of opacifications in animal models such as mice.

View Article and Find Full Text PDF

Vascular leakage plays a key role in vision-threatening retinal diseases such as diabetic retinopathy and age-related macular degeneration. Fluorescence angiography is the current gold standard for identification of leaky vasculature however it lacks depth resolution, providing only 2D images that complicate precise identification and localization of pathological vessels. Optical coherence tomography (OCT) has been widely adopted for clinical ophthalmology due to its high, micron-scale resolution and rapid volumetric scanning capabilities.

View Article and Find Full Text PDF

Polarization-sensitive optical coherence tomography (PS-OCT) enables three-dimensional imaging of biological tissues based on the inherent contrast provided by scattering and polarization properties. In fibrous tissue such as the white matter of the brain, PS-OCT allows quantitative mapping of tissue birefringence. For the popular PS-OCT layout using a single circular input state, birefringence measurements are based on a straight-forward evaluation of phase retardation data.

View Article and Find Full Text PDF

Fluorescence-guided surgery is a state-of-the-art approach for intraoperative imaging during neurosurgical removal of tumor tissue. While the visualization of high-grade gliomas is reliable, lower grade glioma often lack visible fluorescence signals. Here, we present a hybrid prototype combining visible light optical coherence microscopy (OCM) and high-resolution fluorescence imaging for assessment of brain tumor samples acquired by 5-aminolevulinic acid (5-ALA) fluorescence-guided surgery.

View Article and Find Full Text PDF

Diagnostic classification techniques used to diagnose cataracts, the world's leading cause of blindness, are currently based on subjective methods. Here, we present optical coherence tomography as a noninvasive tool for volumetric visualization of lesions formed in the crystalline lens. A custom-made swept-source optical coherence tomography (SS-OCT) system was utilized to investigate the murine crystalline lens.

View Article and Find Full Text PDF

Recent Alzheimer's disease (AD) patient studies have focused on retinal analysis, as the retina is the only part of the central nervous system that can be imaged noninvasively by optical methods. However, as this is a relatively new approach, the occurrence and role of retinal pathological features are still debated. The retina of an APP/PS1 mouse model was investigated using multicontrast optical coherence tomography (OCT) in order to provide a documentation of what was observed in both transgenic and wild-type mice.

View Article and Find Full Text PDF

We present a polarization-sensitive (PS) extension for bright- and dark-field (BRAD) optical coherence tomography imaging. Using a few-mode fiber detection scheme, the light backscattered at different angles is separated, and the BRAD images of tissue scattering are generated. A calibration method to correct for the fiber birefringence is proposed.

View Article and Find Full Text PDF

Previous studies for melanin visualization in the retinal pigment epithelium (RPE) have exploited either its absorption properties (using photoacoustic tomography or photothermal optical coherence tomography [OCT]) or its depolarization properties (using polarization sensitive OCT). However, these methods are only suitable when the melanin concentration is sufficiently high. In this work, we present the concept of hyperspectral OCT for melanin visualization in the RPE when the concentration is low.

View Article and Find Full Text PDF

We present a multimodal visible light optical coherence microscopy (OCM) and fluorescence imaging (FI) setup. Specification and phantom measurements were performed to characterize the system. Two applications in neuroimaging were investigated.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) is a powerful technology for rapid volumetric imaging in biomedicine. The bright field imaging approach of conventional OCT systems is based on the detection of directly backscattered light, thereby waiving the wealth of information contained in the angular scattering distribution. Here we demonstrate that the unique features of few-mode fibers (FMF) enable simultaneous bright and dark field (BRAD) imaging for OCT.

View Article and Find Full Text PDF

Polarization-sensitive optical coherence tomography (PS-OCT) enables noninvasive, high-resolution imaging of tissue polarization properties. In the anterior segments of human eyes, PS-OCT allows the visualization of birefringent and depolarizing structures. We present the use of PS-OCT for imaging the murine anterior eye.

View Article and Find Full Text PDF

We implemented a wide field-of-view visible-light optical coherence microscope (OCM) for investigating brain tissue of patients diagnosed with Alzheimer's disease (AD) and of a mouse model of AD. A submicrometer axial resolution in tissue was achieved using a broad visible light spectrum. The use of various objective lenses enabled reaching micrometer transversal resolution and the acquisition of images of microscopic brain features, such as cell structures, vessels, and white matter tracts.

View Article and Find Full Text PDF

A white light polarization sensitive optical coherence tomography system has been developed, using a supercontinuum laser as the light source. By detecting backscattered light from 400 - 700 nm, an axial resolution of 1.0 µm in air was achieved.

View Article and Find Full Text PDF

A visible light spectral domain optical coherence microscopy system was developed. A high axial resolution of 0.88 in tissue was achieved using a broad visible light spectrum (425 - 685 ).

View Article and Find Full Text PDF