We propose a quantum machine learning algorithm for efficiently solving a class of problems encoded in quantum controlled unitary operations. The central physical mechanism of the protocol is the iteration of a quantum time-delayed equation that introduces feedback in the dynamics and eliminates the necessity of intermediate measurements. The performance of the quantum algorithm is analyzed by comparing the results obtained in numerical simulations with the outcome of classical machine learning methods for the same problem.
View Article and Find Full Text PDFChronic Kidney Disease (CKD) anemia is one of the main common comorbidities in patients undergoing End Stage Renal Disease (ESRD). Iron supplement and especially Erythropoiesis Stimulating Agents (ESA) have become the treatment of choice for that anemia. However, it is very complicated to find an adequate treatment for every patient in each particular situation since dosage guidelines are based on average behaviors, and thus, they do not take into account the particular response to those drugs by different patients, although that response may vary enormously from one patient to another and even for the same patient in different stages of the anemia.
View Article and Find Full Text PDFObjective: Anemia is a frequent comorbidity in hemodialysis patients that can be successfully treated by administering erythropoiesis-stimulating agents (ESAs). ESAs dosing is currently based on clinical protocols that often do not account for the high inter- and intra-individual variability in the patient's response. As a result, the hemoglobin level of some patients oscillates around the target range, which is associated with multiple risks and side-effects.
View Article and Find Full Text PDFComput Methods Programs Biomed
November 2014
Sparse Manifold Clustering and Embedding (SMCE) algorithm has been recently proposed for simultaneous clustering and dimensionality reduction of data on nonlinear manifolds using sparse representation techniques. In this work, SMCE algorithm is applied to the differential discrimination of Glioblastoma and Meningioma Tumors by means of their Gene Expression Profiles. Our purpose was to evaluate the robustness of this nonlinear manifold to classify gene expression profiles, characterized by the high-dimensionality of their representations and the low discrimination power of most of the genes.
View Article and Find Full Text PDFComput Methods Programs Biomed
August 2013
Detection of ventricular fibrillation (VF) at an early stage is being deeply studied in order to lower the risk of sudden death and allows the specialist to have greater reaction time to give the patient a good recovering therapy. Some works are focusing on detecting VF based on numerical analysis of time-frequency distributions, but in general the methods used do not provide insight into the problem. However, this study proposes a new methodology in order to obtain information about this problem.
View Article and Find Full Text PDF