A comparative analysis of the targets for deep brain stimulation (DBS) to treat refractory temporal lobe epilepsy and the rationale for its use is presented, with an emphasis on the latency to obtain the significant antiepileptic effect and the long-term seizure control. The analysis includes consideration of surgical techniques currently used to optimize antiseizure effects and decrease surgical risks. Seizure control is similar for programed DBS and DBS responsive to abnormal cortical or subcortical electroencephalogram (EEG) activity.
View Article and Find Full Text PDFObjective: The authors sought to determine the antiseizure effects of deep brain stimulation (DBS) of the parahippocampal cortex (PHC) for treatment of drug-resistant mesial temporal lobe epilepsy (MTLE).
Methods: After a 3-month baseline period, 6 adult patients with drug-resistant MTLE and hippocampal sclerosis (HS) had stereoelectroencephalography (SEEG)-DBS electrodes implanted at the PHC for identification of the seizure onset zone (SOZ). Patients entered an 8-month, randomized, double-blind protocol for DBS, followed by a 12-month open-phase study.
Epilepsy Res
December 2021
Unlabelled: The olfactory function shares the same cerebral structures as those involved in the origin and propagation of focal temporal lobe seizures. Likewise, functional magnetic resonance imaging (fMRI) allows the study of olfactory function. This suggests that by quantitatively studying the olfactory function with an olfactory paradigm through fMRI it is possible to identify the functional alteration produced by the epileptic focus.
View Article and Find Full Text PDFJ Clin Neurophysiol
November 2021
In patients with mesial temporal lobe epilepsy, high-frequency, low-amplitude electrical stimulation (ES) was applied during 3 weeks through contacts of intracranial electrodes that defined the epileptogenic zone. This subacute ES induced cessation of spontaneous seizures, decreased the number of EEG interictal spikes, caused a 10-fold increase in threshold to induce postdischarges, and showed a profound decrease in regional blood flow of the stimulated area in SPECT studies. Autoradiography analysis of surgical specimens from these patients demonstrated increased expression of benzodiazepine receptors and in gamma-aminobutyric acid content, particularly in the parahippocampal cortex.
View Article and Find Full Text PDFJ Clin Neurophysiol
November 2021
Centromedian thalamic nucleus is an intralaminar nucleus with vast connectivity to cerebral cortex and basal ganglia. It receives afferents from the brain stem through the central tegmental tract and is part of the diffuse thalamic projection system. Because the reticulothalamic system has been related to initiation and propagation of epileptic activity (centroencephalic theory of epilepsy), deep brain stimulation has been proposed to interfere with seizure genesis or propagation.
View Article and Find Full Text PDFObjective: To determine the usefulness and efficacy of radiofrequency ablations (RFA) of the Centromedian thalamic nucleus (CMN) to control primarily generalized or multifocal seizures in refractory epilepsy.
Methods: Six patients with clinical diagnosis of multifocal or primarily generalized drug-resistant epilepsy were included. Bilateral RFA of the CMN was performed through a monopolar 1.
Background: Positron emission tomography (PET) imaging in epilepsy is an in vivo technique that allows the localization of a possible seizure onset zone (SOZ) during the interictal period. Stereo-electro-encephalography (SEEG) is the gold standard to define the SOZ. The objective of this research was to evaluate the accuracy of PET imaging in localizing the site of SOZ compared with SEEG.
View Article and Find Full Text PDF