Sexual dimorphism arises because of divergent fitness optima between the sexes. Phenotypic divergence between sexes can range from mild to extreme. Fireflies, bioluminescent beetles, present various degrees of sexual dimorphism, with species showing very mild sexual dimorphism to species presenting female-specific neoteny, posing a unique framework to investigate the evolution of sexually dimorphic traits across species.
View Article and Find Full Text PDFMany plants are facultatively asexual, balancing short-term benefits with long-term costs of asexuality. During range expansion, natural selection likely influences the genetic controls of asexuality in these organisms. However, evidence of natural selection driving asexuality is limited, and the evolutionary consequences of asexuality on the genomic and epigenomic diversity remain controversial.
View Article and Find Full Text PDFAgricultural pests can develop behavioral resistance to insecticides by choosing to feed or oviposit on insecticide-free hosts. As young larvae have relatively low mobility, oviposition preferences from female adults may play a critical role in shaping the evolutionary trajectory of pest populations. While oviposition avoidance of insecticide-treated hosts was found in different agriculture pests, it remains unclear whether female adults actively choose to occupy insecticide-free hosts.
View Article and Find Full Text PDFForensic palynology is a tool in criminalistics that uses spores and pollen grains to link a certain geographical location with a crime scene. The comparison of the pollen assemblage of a crime-scene soil and that of footwear of suspects and victims proved to be very useful as judicial evidence in multiple environments with marked seasonality. However, its usefulness in non-seasonal high-altitude soils has not been experimentally evaluated to the same extent.
View Article and Find Full Text PDFThe firefly Photinus pyralis inhabits a wide range of latitudinal and ecological niches, with populations living from temperate to tropical habitats. Despite its broad distribution, its demographic history is unknown. In this study, we modelled and inferred different demographic scenarios for North American populations of P.
View Article and Find Full Text PDFEuropean and African natural populations of Drosophila melanogaster have been the focus of several studies aiming at inferring demographic and adaptive processes based on genetic variation data. However, in these analyses little attention has been given to gene flow between African and European samples. Here we present a dataset consisting of 14 fully sequenced haploid genomes sampled from a natural population from the northern species range (Umeå, Sweden).
View Article and Find Full Text PDFNext-generation-sequencing genotype callers are commonly used in studies to call variants from newly sequenced species. However, due to the current availability of genomic resources, it is still common practice to use only one reference genome for a given genus, or even one reference for an entire clade of a higher taxon. The problem with traditional genotype callers, such as the one from GATK, is that they are optimized for variant calling at the population level.
View Article and Find Full Text PDFCurrent phylogenetic comparative methods modeling quantitative trait evolution generally assume that, during speciation, phenotypes are inherited identically between the two daughter species. This, however, neglects the fact that species consist of a set of individuals, each bearing its own trait value. Indeed, because descendent populations after speciation are samples of a parent population, we can expect their mean phenotypes to randomly differ from one another potentially generating a "jump" of mean phenotypes due to asymmetrical trait inheritance at cladogenesis.
View Article and Find Full Text PDFUnderstanding macroevolutionary patterns is central to evolutionary biology. This involves the process of divergence within a species, which starts at the microevolutionary level, for instance, when two subpopulations evolve towards different phenotypic optima. The speed at which these optima are reached is controlled by the degree of stabilising selection, which pushes the mean trait towards different optima in the different subpopulations, and ongoing migration that pulls the mean phenotype away from that optimum.
View Article and Find Full Text PDFAlthough it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant across large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his highly influential view of evolution, G. G.
View Article and Find Full Text PDFInsertions and deletions (indels) are a major source of genetic variation within species and may result in functional changes to coding or regulatory sequences. In this study we report that an indel polymorphism in the 3' untranslated region (UTR) of the metallothionein gene MtnA is associated with gene expression variation in natural populations of Drosophila melanogaster. A derived allele of MtnA with a 49-bp deletion in the 3' UTR segregates at high frequency in populations outside of sub-Saharan Africa.
View Article and Find Full Text PDFThere is a growing interest in investigating the relationship between genes with signatures of natural selection and genes identified in QTL mapping studies using combined population and quantitative genetics approaches. We dissected an X-linked interval of 6.2 Mb, which contains two QTL underlying variation in chill coma recovery time (CCRT) in Drosophila melanogaster from temperate (European) and tropical (African) regions.
View Article and Find Full Text PDFDrosophila melanogaster has played a pivotal role in the development of modern population genetics. However, many basic questions regarding the demographic and adaptive history of this species remain unresolved. We report the genome sequencing of 139 wild-derived strains of D.
View Article and Find Full Text PDFDrosophila melanogaster spread from sub-Saharan Africa to the rest of the world colonizing new environments. Here, we modeled the joint demography of African (Zimbabwe), European (The Netherlands), and North American (North Carolina) populations using an approximate Bayesian computation (ABC) approach. By testing different models (including scenarios with continuous migration), we found that admixture between Africa and Europe most likely generated the North American population, with an estimated proportion of African ancestry of 15%.
View Article and Find Full Text PDFPremise Of The Study: The Cucurbitaceae genus Cayaponia comprises ∼60 species that occur from Uruguay to the southern United States and the Caribbean; C. africana occurs in West Africa and on Madagascar. Pollination is by bees or bats, raising the question of the evolutionary direction and frequency of pollinator shifts.
View Article and Find Full Text PDF