Publications by authors named "Pablo Del Mazo-Sevillano"

C H 3 + , a cornerstone intermediate in interstellar chemistry, has recently been detected for the first time by using the James Webb Space Telescope. The photodissociation of this ion is studied here. Accurate explicitly correlated multi-reference configuration interaction ab initio calculations are done, and full-dimensional potential energy surfaces are developed for the three lower electronic states, with a fundamental invariant neural network method.

View Article and Find Full Text PDF

Practical density functional theory (DFT) owes its success to the groundbreaking work of Kohn and Sham that introduced the exact calculation of the non-interacting kinetic energy of the electrons using an auxiliary mean-field system. However, the full power of DFT will not be unleashed until the exact relationship between the electron density and the non-interacting kinetic energy is found. Various attempts have been made to approximate this functional, similar to the exchange-correlation functional, with much less success due to the larger contribution of kinetic energy and its more non-local nature.

View Article and Find Full Text PDF

The (H CO) +OH and H CO-OH+H CO reaction dynamics are studied theoretically for temperatures below 300 K. For this purpose, a full dimension potential energy surface is built, which reproduces well accurate ab initio calculations. The potential presents a submerged reaction barrier, as an example of the catalytic effect induced by the presence of the third molecule.

View Article and Find Full Text PDF

A new potential energy surface (PES) and dynamical study of the reactive process of HCO + OH toward the formation of HCO + HO and HCOOH + H are presented. In this work, a source of spurious long range interactions in symmetry adapted neural network (NN) schemes is identified, which prevents their direct application for low temperature dynamical studies. For this reason, a partition of the PES into a diabatic matrix plus a NN many-body term has been used, fitted with a novel artificial neural network scheme that prevents spurious asymptotic interactions.

View Article and Find Full Text PDF

A recent Ring Polymer Molecular Dynamics study of the reactions of OH with methanol and formaldehyde, at zero pressure and below 100 K, has shown the formation of long lived complexes, with long lifetimes, longer than 100 ns for the lower temperatures studied, 20-100 K (del Mazo-Sevillano , 2019). These long lifetimes support the existence of multi collision events with the He buffer-gas atoms under experimental conditions, as suggested by several transition state theory studies of these reactions. In this work we study these secondary collisions, as a dynamical approach to study pressure effects on these reactions.

View Article and Find Full Text PDF

The quantum dynamics of the title reactions are studied using the ring polymer molecular dynamics (RPMD) method from 20 to 1200 K using recently proposed full dimensional potential energy surfaces which include long-range dipole-dipole interactions. A V-shaped dependence of the reaction rate constants is found with a minimum at 200-300 K, in rather good agreement with the current experimental data. For temperatures above 300 K the reaction proceeds following a direct H-abstraction mechanism.

View Article and Find Full Text PDF