Publications by authors named "Pablo Dalmasso"

An innovative supramolecular architecture is reported for bienzymatic glucose biosensing based on the use of a nanohybrid made of multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with a Schiff base modified with two phenylboronic acid residues (SB-dBA) as platform for the site-specific immobilization of the glycoproteins glucose oxidase (GOx) and horseradish peroxidase (HRP). The analytical signal was obtained from amperometric experiments at - 0.050 V in the presence of 5.

View Article and Find Full Text PDF

L-Lactate is an important bioanalyte in the food industry, biotechnology, and human healthcare. In this work, we report the development of a new L-lactate electrochemical biosensor based on the use of multiwalled carbon nanotubes non-covalently functionalized with avidin (MWCNT-Av) deposited at glassy carbon electrodes (GCEs) as anchoring sites for the bioaffinity-based immobilization of a new recombinant biotinylated lactate oxidase (bLOx) produced in through biotinylation. The specific binding of MWCNT-Av to bLOx was characterized by amperometry, surface plasmon resonance (SPR), and electrochemical impedance spectroscopy (EIS).

View Article and Find Full Text PDF

We report a nanohybrid material obtained by non-covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with the new ligand (((1E,1'E)-(naphthalene-2,3-diylbis(azaneylylidene))bis(methaneylylidenedene)) bis(4-hydroxy-3,1-phenylene))diboronic acid (SB-dBA), rationally designed to mimic some recognition properties of biomolecules like concanavalin A, for the development of electrochemical biosensors based on the use of glycobiomolecules as biorecognition element. We present, as a proof-of-concept, a hydrogen peroxide biosensor obtained by anchoring horseradish peroxidase (HRP) at a glassy carbon electrode (GCE) modified with the nanohybrid prepared by sonication of 2.0 mg mL MWCNTs and 0.

View Article and Find Full Text PDF

The increased emergence of antibiotic-resistant bacteria is a serious health problem worldwide. In this sense, silver nanoparticles (AgNPs) have received increasing attention for their antimicrobial activity. In this context, the goal of this study was to produce AgNPs by a green synthesis protocol using an aqueous leaf extract of Schinus areira as biocomposite to later characterize their antimicrobial action.

View Article and Find Full Text PDF

The COVID-19 pandemic had devastating effects throughout the world, producing a severe crisis in the health systems and in the economy of a long list of countries, even developed ones. Therefore, highly sensitive and selective analytical bioplatforms that allow the descentralized and fast detection of the severe acute respiratory síndrome coronavirus 2 (SARS-CoV-2), are extremely necessary. Since 2020, several reviews have been published, most of them focused on the different strategies to detect the SARS-CoV-2, either from RNA, viral proteins or host antibodies produced due to the presence of the virus.

View Article and Find Full Text PDF

An innovative strategy is proposed to simultaneously exfoliate multi-walled carbon nanotubes (MWCNTs) and generate MWCNTs with immunoaffinity properties. This strategy was based on the non-covalent functionalization of MWCNTs with human immunoglobulin G (IgG) by sonicating 2.5 mg mL MWCNTs in 2.

View Article and Find Full Text PDF

We report two novel genosensors for the quantification of SARS-CoV-2 nucleic acid using glassy carbon electrodes modified with a biocapture nanoplatform made of multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with avidin (Av) as a support of the biotinylated-DNA probes. One of the genosensors was based on impedimetric transduction offering a non-labelled and non-amplified detection of SARS-CoV-2 nucleic acid through the increment of [Fe(CN)] charge transfer resistance. This biosensor presented an excellent analytical performance, with a linear range of 1.

View Article and Find Full Text PDF

This work presents for the first time the systematic preparation of a novel carbon nanotube-MCM-41 hybrid employing the mesoporous material MCM-41 as a successful dispersant for multiwall carbon nanotubes (MWCNTs). Relevant dispersion variables such as the amount of MWCNTs, MCM-41 concentration, and sonication time were optimized through a central composite design (CDD)/response surface methodology (RSM). Several solvents were evaluated and ,-dimethylformamide (DMF) was selected because it allowed reaching stable dispersions with very good electrochemical response.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are non-coding regulatory RNAs that play an important role in RNA silencing and post-transcriptional gene expression regulation. Since their dysregulation has been associated with Alzheimer disease, cardiovascular diseases and different types of cancer, among others, miRNAs can be used as biomarkers for early diagnosis and prognosis of these diseases. The methods commonly used to quantify miRNAs are, in general, complex, costly, with limited application for point-of-care devices or resource-limited facilities.

View Article and Find Full Text PDF

The use of silver nanoparticles (AgNPs) with their novel and distinct physical, chemical, and biological properties, has proven to be an alternative for the development of new antibacterial agents. In particular, the possibility to generate AgNPs coated with novel capping agents, such as phytomolecules obtained via a green synthesis (G-AgNPs), is attracting great attention in scientific research. Recently, we showed that membrane interactions seem to be involved in the antibacterial activity of AgNPs obtained via a green chemical synthesis using the aqueous leaf extract of chicory (Cichorium intybus L.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) constitute a very promising approach for overcoming the emergence of antibiotic resistance bacteria. Although their mode of action could be related with membrane damage, the AgNPs-lipid membrane interaction is still unclear. In this sense, the present work investigated the interaction of model lipid membranes with AgNPs coated with different capping agents such as citrate (C-AgNPs) and phytomolecules (G-AgNPs) obtained via a green synthesis.

View Article and Find Full Text PDF

Rate coefficients for the gas-phase reactions of OH radicals and Cl atoms with 1-methoxy-2-propanone (1-M-2-PONE), 1-methoxy-2-propanol (1-M-2-POL), and 1-methoxy-2-butanol (1-M-2-BOL) were determined at room temperature and atmospheric pressure using a conventional relative-rate technique. The following absolute rate coefficients were derived: k (OH + 1-M-2-PONE) = (0.64 ± 0.

View Article and Find Full Text PDF

Currently, the biosynthesis of silver-based nanomaterials attracts enormous attention owing to the documented antimicrobial properties of these ones. This study reports the extracellular biosynthesis of silver nanoparticles (Ag-NPs) using a Pseudomonas aeruginosa strain from a reference culture collection. A greenish culture supernatant of P.

View Article and Find Full Text PDF

We report for the first time the development of a sensitive and selective glucose biosensor based on the self-assembling of multiwall carbon nanotubes (MWCNTs) dispersed in polyhistidine (Polyhis) and glucose oxidase (GOx) on glassy carbon electrodes (GCE). The supramolecular architecture was characterized by SEM, FT-IR and electrochemical techniques. The optimum multistructure was obtained with five (MWCNT-Polyhis/GOx) bilayers and one layer of Nafion as anti-interferent barrier.

View Article and Find Full Text PDF

We report for the first time the use of polyhistidine (Polyhis) to efficiently disperse multiwall carbon nanotubes (MWCNTs). The optimum dispersion MWCNT-Polyhis was obtained by sonicating for 30 min 1.0 mg mL(-1) MWCNTs in 0.

View Article and Find Full Text PDF

The relative rate technique has been used to determine the rate constants of the reactions of OH radicals with CF(3)CCl=CCl(2) (k(1)), CF(3)CCl=CClCF(3) (k(2)) and CF(3)CF=CFCF(3) (k(3)). Experiments were carried out at (298±2) K and atmospheric pressure using ultrapure nitrogen as gas bath. The decay rates of the organic species were measured relative to those of ethane, methanol, acetone, chloroethane and 2-butanone.

View Article and Find Full Text PDF

Rate coefficients for the gas-phase reactions of OH radicals with four unsaturated alcohols, 3-methyl-3-buten-1-ol (k1), 2-buten-1-ol (k2), 2-methyl-2-propen-1-ol (k3) and 3-buten-1-ol (k4), were measured using two different techniques, a conventional relative rate method and the pulsed laser photolysis-laser induced fluorescence technique. The Arrhenius rate coefficients (in units of cm(3) molecule(-1) s(-1)) over the temperature range 263-371 K were determined from the kinetic data obtained as k1 = (5.5 +/- 1.

View Article and Find Full Text PDF