In insects, mating ability at elevated temperature can be relevant for adaptation to heat-stressed environments and global warming. Here, we examined copulation latency (T1), copulation duration (T2), and mating frequency (T3, an index of mating success) in two related sets of recombinant inbred lines (RIL) in Drosophila melanogaster at both elevated (33 °C) and benign (25 °C) temperatures. One of these RIL sets (RIL-SH2) was shown to be consistently more resistant in both heat knockdown and heat-shock survival assays than its related set (RIL-D48) in previous studies.
View Article and Find Full Text PDF