With the aim of exploring new materials and properties, we report the synthesis of a thermoplastic chain extended polyurethane membrane, with superior strength and toughness, obtained by incorporating two different concentrations of reactive cellulose nanocrystals (CNC) for potential use in kidney dialysis. Membrane nanocomposites were prepared by the phase inversion method and their structure and properties were determined. These materials were prepared from a polyurethane (PU) yielded from poly(1,4 butylene adipate) as a soft segment diol, isophorone diisocyanate (IPDI) and hexamethylenediamine (HMDA) as isocyanate and chain extender, respectively (hard segment), filled with 1 or 2% / CNC.
View Article and Find Full Text PDFHere analytical Fukui functions based on density functional theory are applied to investigate the redox reactivity of pristine and defected graphene lattices. A carbon H-terminated graphene structure (with 96 carbon atoms) and a graphene defected surface with Stone-Wales rearrangement and double vacancy defects are used as models. Pristine sp-hybridized, hexagonal arranged carbon atoms exhibit a symmetric reactivity.
View Article and Find Full Text PDFLow-valent molybdenum dicarbonyl complexes with a diazabutadiene [(mes)DAB(R); [ArN═C(R)C(R)═NAr]; Ar = 2,4,6-trimethylphenyl (mes), R = H or CH3] ligand have been synthesized and fully characterized. The title complexes exhibit elongated DAB C-N and shortened C-C bond lengths over the free ligand and other zerovalent molybdenum complexes of DAB. Compared to known examples theoretically described as iminato π-radicals (L(•-)), the oxidation state assignment fits a molybdenum(II) description.
View Article and Find Full Text PDF