A Monte Carlo crystal growth simulation tool, , is described which is able to simultaneously model both the crystal habit and nanoscopic surface topography of any crystal structure under conditions of variable supersaturation or at equilibrium. This tool has been developed in order to permit the rapid simulation of crystal surface maps generated by scanning probe microscopies in combination with overall crystal habit. As the simulation is based upon a coarse graining at the nanoscopic level features such as crystal rounding at low supersaturation or undersaturation conditions are also faithfully reproduced.
View Article and Find Full Text PDFMechanotransduction is defined as the ability of cells to sense mechanical stimuli from their surroundings and translate them into biochemical signals. Epidermal keratinocytes respond to mechanical cues by altering their proliferation, migration, and differentiation. In vitro cell culture, however, utilises tissue culture plastic, which is significantly stiffer than the in vivo environment.
View Article and Find Full Text PDFBackground: Volcanic plumes are complex environments composed of gases and ash particles, where chemical and physical processes occur at different temperature and compositional regimes. Commonly, soluble sulphate- and chloride-bearing salts are formed on ash as gases interact with ash surfaces. Exposure to respirable volcanic ash following an eruption is potentially a significant health concern.
View Article and Find Full Text PDFUnderstanding and predicting crystal growth is fundamental to the control of functionality in modern materials. Despite investigations for more than one hundred years, it is only recently that the molecular intricacies of these processes have been revealed by scanning probe microscopy. To organize and understand this large amount of new information, new rules for crystal growth need to be developed and tested.
View Article and Find Full Text PDFA new zeolitic-imidazolate framework (ZIF), [Zn(imidazolate)2-x(benzimidazolate)x], that has the zeolite A (LTA) framework topology and contains relatively inexpensive organic linkers has been revealed using in situ atomic force microscopy. The new material was grown on the structure-directing surface of [Zn(imidazolate)1.5(5-chlorobenzimidazolate)0.
View Article and Find Full Text PDFCrystal growth of the metal-organic framework MOF-5 was studied by atomic force microscopy (AFM) for the first time. Growth under low supersaturation conditions was found to occur by a two-dimensional or spiral crystal growth mechanism. Observation of developing nuclei during the former reveals growth occurs through a process of nucleation and spreading of metastable and stable sub-layers revealing that MOFs may be considered as dense phase structures in terms of crystal growth, even though they contain sub-layers consisting of ordered framework and disordered non-framework components.
View Article and Find Full Text PDFMicroporous zincophosphate sodalite crystal growth has been studied in situ by atomic force microscopy. This simple model system permits an in depth investigation of some of the axioms governing crystal growth of nanoporous framework solids in general. In particular, this work reveals the importance of considering the growth of a framework material as the growth of a dense phase material where the framework structure, nonframework cations, and hydrogen-bonded water must all be considered.
View Article and Find Full Text PDFNanoporous metal organic frameworks (MOFs) form one of the newest families of crystalline nanoporous material that is receiving worldwide attention. Successful use of MOFs for application requires not only development of new materials but also a need to control their crystal properties such as size, morphology, and defect concentration. An understanding of the crystal growth processes is necessary in order to aid development of routes to control such properties of the crystallites.
View Article and Find Full Text PDFA combination of atomic force microscopy (AFM), high-resolution scanning electron microscopy (HR-SEM), focused-ion-beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS), confocal fluorescence microscopy (CFM), and UV/Vis and synchrotron-based IR microspectroscopy was used to investigate the dealumination processes of zeolite ZSM-5 at the individual crystal level. It was shown that steaming has a significant impact on the porosity, acidity, and reactivity of the zeolite materials. The catalytic performance, tested by the styrene oligomerization and methanol-to-olefin reactions, led to the conclusion that mild steaming conditions resulted in greatly enhanced acidity and reactivity of dealuminated zeolite ZSM-5.
View Article and Find Full Text PDFCrystalline nanoporous materials are one of the most important families of complex functional material. Many questions pertaining to the molecular assembly mechanism of the framework of these materials remain unanswered. Only recently has it become possible to answer definitively some of these questions by observation of growing nanoscopic surface features on metal organic frameworks (MOFs) through use of in situ atomic force microscopy (AFM).
View Article and Find Full Text PDFA molecular-scale understanding of crystal growth is critical to the development of important materials such as pharmaceuticals, semiconductors and catalysts. Only recently has this been possible with the advent of atomic force microscopy that permits observation of nanoscopic features on solid surfaces under a liquid or solution environment. This allows in situ measurement of important chemical transformations such as crystal growth and dissolution.
View Article and Find Full Text PDFThe influence of the chemical composition and of the storage and activation protocol on the diffusion of methanol into strongly chemically zoned crystals of the silicoaluminophosphate zeotype STA-7 has been investigated by interference microscopy. Analysis of the evolution of transient intracrystalline concentration profiles reveals that just-calcined SAPO STA-7 crystals with lower Si content (Si/(Si + P) = 0.18) exhibit higher surface permeability and bulk diffusivity than those with higher Si content (S/(Si + P) = 0.
View Article and Find Full Text PDFA self-limited monolayer grown on dolomite (CaMg(CO(3))(2)), showing distinct friction contrast with the substrate as reported earlier using lateral force microscopy, was investigated with in situ atomic force microscopy (AFM) adhesion mapping and force-modulation techniques. Force-modulation microscopy revealed lower stiffness on a Ca-rich film in comparison to that on the dolomite surface. The friction contrast therefore results from a larger tip-surface contact area when the AFM probe is in contact with the Ca-rich film as opposed to the contact area with dolomite.
View Article and Find Full Text PDFChem Commun (Camb)
February 2010
We present the first in situ observations of the growth of a zeotype using atomic force microscopy. The {100} face of sodalite zincophosphate grows by a spiral growth mechanism forming an interlaced spiral pattern. This is caused by the anisotropic growth of sub-steps formed at the dislocation, which is related to the different condensation rates of zinc and phosphorus.
View Article and Find Full Text PDFZeolites play a crucial part in acid-base heterogeneous catalysis. Fundamental insight into their internal architecture is of great importance for understanding their structure-function relationships. Here, we report on a new approach correlating confocal fluorescence microscopy with focused ion beam-electron backscatter diffraction, transmission electron microscopy lamelling and diffraction, atomic force microscopy and X-ray photoelectron spectroscopy to study a wide range of coffin-shaped MFI-type zeolite crystals differing in their morphology and chemical composition.
View Article and Find Full Text PDFLateral Force Microscopy (LFM) studies were carried out on cleaved calcite sections in contact with solutions supersaturated with respect to otavite (CdCO3) or calcite-otavite solid solutions (SS) as a means to examine the potential for future application of LFM as a nanometer-scale mineral surface composition mapping technique. Layer-by-layer growth of surface films took place either by step advancement or by a surface nucleation and step advancement mechanisms. Friction vs.
View Article and Find Full Text PDFThe resolving power of high-resolution scanning electron microscopy was judged using topographical height data from atomic force microscopy in order to assess the technique as a tool for understanding nanoporous crystal growth.
View Article and Find Full Text PDFThe effect of dissolved Zn, Co, Pb, Mg, and Ca on the uptake of cadmium by biogenic aragonite was investigated. Experiments were performed in batch-reactors using metal-cadmium-bearing solutions and shell fragments with diameters in different ranges, the solid/liquid ratio being 10 grams per liter. Different initial concentrations of cadmium and metals (1.
View Article and Find Full Text PDF