Tumor cells are known to favor a glycolytic metabolism over oxidative phosphorylation (OxPhos), which takes place in mitochondria, to produce the energy and building blocks essential for cell maintenance and cell growth. This phenotypic property of tumor cells gives them several advantages over normal cells and is known as the Warburg effect. Tumors can be treated as a metabolic disease by targeting their bioenergetics capacity.
View Article and Find Full Text PDFThe Warburg effect, a hallmark of cancer, has recently been identified as a metabolic limitation of Chinese Hamster Ovary (CHO) cells, the primary platform for the production of monoclonal antibodies (mAb). Metabolic engineering approaches, including genetic modifications and feeding strategies, have been attempted to impose the metabolic prevalence of respiration over aerobic glycolysis. Their main objective lies in decreasing lactate production while improving energy efficiency.
View Article and Find Full Text PDFCheese whey, a byproduct of the cheese-making industry, is discarded in many countries in the environment, causing pollution. This byproduct contains high-quality proteins containing encrypted biologically active peptides. The objective of this work was to evaluate the suitability of using this waste to produce bioactive peptides by enzymatic hydrolysis with a digestive enzyme.
View Article and Find Full Text PDF