The synthesis and characterization of 24 ruthenium(II) arene complexes of the type [(-cym)RuCl(Fc-acac)] (where -cym = p-cymene and Fc-acac = functionalized ferrocenyl β-diketonate ligands) are reported, including single-crystal X-ray diffraction for 21 new complexes. Chemosensitivity studies have been conducted against human pancreatic carcinoma (MIA PaCa-2), human colorectal adenocarcinoma -wildtype (HCT116 ) and normal human retinal epithelial cell lines (APRE-19). The most active complex, which contains a 2-furan-substituted ligand (), is 5x more cytotoxic than the analogs 3-furan complex () against MIA PaCa-2.
View Article and Find Full Text PDFThe synthesis and characterization of new bis(bipyridine)ruthenium(II) ferrocenyl β-diketonate complexes, [(bpy) Ru(Fc-acac)][PF ] (bpy=2,2'-bipyridine; Fc-acac=functionalized ferrocenyl β-diketonate ligand) are reported. Alongside clinical platinum drugs, these bimetallic ruthenium-iron complexes have been screened for their cytotoxicity against MIA PaCa-2 (human pancreatic carcinoma), HCT116 p53 (human colon carcinoma, p53-wild type) and ARPE-19 (human retinal pigment epithelial) cell lines. With the exception of one complex, the library exhibit nanomolar potency against cancerous cell lines, and their relative potencies are up to 40x, 400x and 72x more cytotoxic than cisplatin, carboplatin and oxaliplatin, respectively.
View Article and Find Full Text PDFThe straightfoward creation of an unreported glutathione-stabilised iron(iii) complex is disclosed. In contrast to previous reports, glutathione was shown to coordinate and stabilise iron directly under physiological conditions in the absence of additional sulfur containing molecules, such as sodium sulfide. The complex was extensively characterised; the molecular geometry was determined as two inequivalent octahedra, approximately 2/3 of which are slightly distorted towards more tetrahedral in character, with the remaining 1/3 more regularly octahedral.
View Article and Find Full Text PDFIn order to address outstanding questions about ruthenium complexes in complex biological solutions, 19F NMR spectroscopy was used to follow the binding preferences between fluorinated RuII(η6-arene)(bipyridine) complexes and protected amino acids and glutathione. Reporting what ruthenium compounds bind to in complex environments has so far been restricted to relatively qualitative methods, such as mass spectrometry and X-ray spectroscopic methods; however, quantitative information on the species present in the solution phase cannot be inferred from these techniques. Furthermore, using 1H NMR, in water, to distinguish and monitor a number of different complex RuII(η6-arene) adducts forming is challenging.
View Article and Find Full Text PDF