Material flow analysis (MFA) is used to quantify and understand the life cycles of materials from production to end of use, which enables environmental, social, and economic impacts and interventions. MFA is challenging as available data are often limited and uncertain, leading to an under-determined system with an infinite number of possible stocks and flows values. Bayesian statistics is an effective way to address these challenges by principally incorporating domain knowledge, quantifying uncertainty in the data, and providing probabilities associated with model solutions.
View Article and Find Full Text PDFBackground: The Sto. Niño site in Benguet province, Philippines was once a mining area that has now been transformed into an agricultural land. In this area, there has been significant integration of the three indigenous people (IPs) Ibaloi, Kankanaeys and Kalanguyas with the Ilocano community.
View Article and Find Full Text PDFLiquid drainage through foam is dominated by gravity, capillary, and viscous forces. The liquid is conducted by an isotropic network of Plateau borders; however, imposed stress changes the alignment of the foam's structural elements. Previous numerical simulations predicted that a vertical drainage flow will be deflected horizontally if the foam is sheared.
View Article and Find Full Text PDFTurbulence in stirred tank flotation tanks impacts the bulk transport of particles and has an important role in particle-bubble collisions. These collisions are necessary for attachment, which is the main physicochemical mechanism enabling the separation of valuable minerals from ore in froth flotation. Modifications to the turbulence profile in a flotation tank, therefore, can result in improvements in flotation performance.
View Article and Find Full Text PDFThis paper describes the implementation of a level control strategy in a laboratory-scale flotation system. The laboratory-scale system consists of a bank of three flotation tanks connected in series, which mimics a flotation system found in mineral processing plants. Besides the classical feedback control strategy, we have also included a feedforward strategy to better account for process disturbances.
View Article and Find Full Text PDFPositron emission particle tracking (PEPT) is a technique for measuring the motion of tracer particles in systems of flow such as mineral froth flotation. An advantage of PEPT is that tracer particles with different physical properties can be tracked in the same experimental system, which allows detailed studies of the relative behaviour of different particle classes in flotation. This work describes the standard operating protocol developed for PEPT experiments in a flotation vessel at PEPT Cape Town in South Africa.
View Article and Find Full Text PDFUnderstanding the coalescence of particle-laden bubbles is crucial to our understanding of the role of particles in stabilizing liquid foams. In this work, the coalescence of microparticle-laden bubbles is studied experimentally using high-speed photography. In particular, the interparticle forces in the neck region during the early stage of bubble coalescence are calculated.
View Article and Find Full Text PDFSmall hydrocyclones are an attractive technology for biomass separation from fermentation processes. The interactive effect of design parameters on the performance of mini-hydrocyclones is, however, not fully explored and studies are often limited by the challenges in manufacturing such small units. Here, 10-mm mini-hydrocyclones are produced by 3D printing and the impact of spigot diameter, vortex finder diameter and height on separation performance is studied.
View Article and Find Full Text PDFChem Eng Technol
December 2018
For the first time, a two-stage decision support framework for equipment selection, applied to biomass separation, is presented. In the first stage, the framework evaluates from a number of equipment based on the process requirements and outputs only those that offer a technically feasible separation. In the second stage, the analytic hierarchy process is applied for performing a multicriteria decision analysis to select amongst the feasible equipment based on separation performance and energy consumption criteria.
View Article and Find Full Text PDFThe rising behavior of bubbles, initially half and fully coated with glass beads of various sizes, was investigated. The bubble velocity, aspect ratio, and oscillation periods were determined using high-speed photography and image analysis. In addition, the acting forces, drag modification factor, and modified drag coefficient were calculated and interpreted.
View Article and Find Full Text PDFPseudo-two-dimensional (2D) foams are commonly used in foam studies as it is experimentally easier to measure the bubble size distribution and other geometric and topological properties of these foams than it is for a 3D foam. Despite the widespread use of 2D foams in both simulation and experimental studies, many important geometric and topological relationships are still not well understood. Film size, for example, is a key parameter in the stability of bubbles and the overall structure of foams.
View Article and Find Full Text PDF