Multicopper oxidases (MCOs) share a common catalytic mechanism of activation by oxygen and cupredoxin-like folding, along with some common structural determinants. Laccases constitute the largest group of MCOs, with fungal laccases having the greatest biotechnological applicability due to their superior ability to oxidize a wide range of aromatic compounds and lignin, which is enhanced in the presence of redox mediators. The adaptation of these versatile enzymes to specific application processes can be achieved through the directed evolution of the recombinant enzymes.
View Article and Find Full Text PDFUnlike laccases sensu stricto, which are usually monomeric enzymes, laccase-like enzymes recently re-classified as Novel Laccases (NLACs) are characterized by the formation of heterodimers with small proteins (subunits) of unknown function. Here the NLAC from Pleurotus eryngii (PeNL) and a small protein selected from the fungal genome, that is homologous to reported POXA3 from Pleurotus ostreatus, were produced in Aspergillus oryzae separately or together. The two proteins interacted regardless of whether the small subunit was co-expressed or exogenously added to the enzyme.
View Article and Find Full Text PDFMulti-copper oxidases (MCO) share a common molecular architecture and the use of copper ions as cofactors to reduce O to HO, but show high sequence heterogeneity and functional diversity. Many new emerging MCO genes are wrongly annotated as laccases, the largest group of MCOs, with the widest range of biotechnological applications (particularly those from basidiomycete fungi) due to their ability to oxidise aromatic compounds and lignin. Thus, comprehensive studies for a better classification and structure-function characterisation of MCO families are required.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
December 2022
Background: During the kraft process to obtain cellulosic pulp from wood, most of the lignin is removed by high-temperature alkaline cooking, released in the black liquors and usually incinerated for energy. However, kraft lignins are a valuable source of phenolic compounds that can be valorized in new bio-based products. The aim of this work is to develop laccases capable of working under the extreme conditions of high temperature and pH, typical of the industrial conversion of wood into kraft pulp and fibreboard, in order to provide extremophilic biocatalysts for depolymerising kraft lignin, and enzyme-assisted technologies for kraft pulp and fibreboard production.
View Article and Find Full Text PDFAgaricomycetes fungi responsible for decay of wood and other lignocellulosic substrates constitute a valuable source of lignin-degrading enzymes. Among these enzymes, laccases (multi-copper oxidases) present remarkable biotechnological potential as environmentally friendly biocatalysts able to oxidize a wide range of aromatic compounds using oxygen as the only requirement. Laccases from saprotrophic Agaricales species have been much less studied than laccases from Polyporales, despite the fact that the former fungi are excellent sources of laccases.
View Article and Find Full Text PDFSaccharomyces cerevisiae plays an important role in the heterologous expression of an array of proteins due to its easy manipulation, low requirements and ability for protein post-translational modifications. The implementation of the preproleader secretion signal of the α-factor mating pheromone from this yeast contributes to increase the production yields by targeting the foreign protein to the extracellular environment. The use of this signal peptide combined with enzyme-directed evolution allowed us to achieve the otherwise difficult functional expression of fungal laccases in S.
View Article and Find Full Text PDFLaccases secreted by saprotrophic basidiomycete fungi are versatile biocatalysts able to oxidize a wide range of aromatic compounds using oxygen as the sole requirement. is a preferred host for engineering fungal laccases. To assist the difficult secretion of active enzymes by yeast, the native signal peptide is usually replaced by the preproleader of alfa mating factor (MFα1).
View Article and Find Full Text PDFThe robustness of a high-redox potential laccase has been enhanced by swapping its second cupredoxin domain with that from another fungal laccase, which introduced a pool of neutral mutations in the protein sequence without affecting enzyme functionality. The new laccase showed outstanding stability to temperature, pH (2-9) and to organic solvents, while maintaining the ability to oxidize high-redox potential substrates. By engineering the signal peptide, enzyme secretion levels in Saccharomyces cerevisiae were increased, which allowed to purify the engineered enzyme for further characterization.
View Article and Find Full Text PDFPolyaniline is a conductive polymer with distinctive optical and electrical properties. Its enzymatic synthesis is an environmentally friendly alternative to the use of harsh oxidants and extremely acidic conditions. 7D5L, a high-redox potential laccase developed in our lab, is the biocatalyst of choice for the synthesis of green polyaniline (emeraldine salt) due to its superior ability to oxidize aniline and kinetic stability at the required polymerization conditions (pH 3 and presence of anionic surfactants) as compared with other fungal laccases.
View Article and Find Full Text PDF