Significance: Accurate identification between pathologic (e.g., tumors) and healthy brain tissue is a critical need in neurosurgery.
View Article and Find Full Text PDFInterim results from two phase 1 trials demonstrate progress in the use of chimeric antigen receptor (CAR) T cell therapy for recurrent glioblastoma (GBM).
View Article and Find Full Text PDFThe recent outbreak of monkeypox virus (MPXV) was unprecedented in its size and distribution. Those living with uncontrolled HIV and low CD4 T cell counts might develop a fulminant clinical mpox course with increased mortality, secondary infections, and necrotizing lesions. Fatal cases display a high and widespread MPXV tissue burden.
View Article and Find Full Text PDFThe emerging field of cancer neuroscience reshapes our understanding of the intricate relationship between the nervous system and cancer biology; this new paradigm is likely to fundamentally change and advance neuro-oncological care. The profound interplay between cancers and the nervous system is reciprocal: Cancer growth can be induced and regulated by the nervous system; conversely, tumors can themselves alter the nervous system. Such crosstalk between cancer cells and the nervous system is evident in both the peripheral and central nervous systems.
View Article and Find Full Text PDFOncolytic virotherapy or immunovirotherapy is a strategy that utilizes viruses to selectively infect and kill tumor cells while also stimulating an immune response against the tumor. Early clinical trials in both pediatric and adult patients using oncolytic herpes simplex viruses (oHSV) have demonstrated safety and promising efficacy; however, combinatorial strategies designed to enhance oncolysis while also promoting durable T-cell responses for sustaining disease remission are likely required. We hypothesized that combining the direct tumor cell killing and innate immune stimulation by oHSV with a vaccine that promotes T cell-mediated immunity may lead to more durable tumor regression.
View Article and Find Full Text PDFThe authors present a historical analysis of the first neurosurgical service in Texas. Initially established as a subdivision within the Department of Surgery in the early 1900s, this service eventually evolved into the Department of Neurosurgery at the University of Texas Medical Branch (UTMB). The pivotal contributions of individual chiefs of neurosurgery throughout the years are highlighted, emphasizing their roles in shaping the growth of the neurosurgery division.
View Article and Find Full Text PDFProteins are densely packed in cells and tissues, where they form complex nanostructures. Expansion microscopy (ExM) variants have been used to separate proteins from each other in preserved biospecimens, improving antibody access to epitopes. Here, we present an ExM variant, decrowding expansion pathology (dExPath), that can expand proteins away from each other in human brain pathology specimens, including formalin-fixed paraffin-embedded (FFPE) clinical specimens.
View Article and Find Full Text PDFBackground: Understanding the structural connectivity of white matter tracts (WMT) and their related functions is a prerequisite to implementing an "a la carte" "connectomic approach" to glioma surgery. However, accessible resources facilitating such an approach are lacking. Here we present an educational method that is readily accessible, simple, and reproducible that enables the visualization of WMTs on individual patient images via an atlas-based approach.
View Article and Find Full Text PDFThe efficiency with which the brain reorganizes following injury not only depends on the extent and the severity of the lesion, but also on its temporal features. It is established that diffuse low-grade gliomas (DLGG), brain tumours with a slow-growth rate, induce a compensatory modulation of the anatomo-functional architecture, making this kind of tumours an ideal lesion model to study the dynamics of neuroplasticity. Direct electrostimulation (DES) mapping is a well-tried procedure used during awake resection surgeries to identify and spare cortical epicentres which are critical for a range of functions.
View Article and Find Full Text PDFThe visualization of protoporphyrin IX (PPIX) fluorescence with the help of surgical microscopes during 5-aminolevulinic acid-mediated fluorescence-guided resection (FGR) of gliomas is still limited at the tumor margins. Hyperspectral imaging (HI) detects PPIX more sensitively but is not yet ready for intraoperative use. We illustrate the current status with three experiments and summarize our own experience using HI: (1) assessment of HI analysis algorithm using pig brain tissue, (2) a partially retrospective evaluation of our experience from HI projects, and (3) device comparison of surgical microscopy and HI.
View Article and Find Full Text PDFWorld Health Organization (WHO) grade 4 gliomas of the cerebellum are rare entities whose understanding trails that of their supratentorial counterparts. Like supratentorial high-grade gliomas (sHGG), cerebellar high-grade gliomas (cHGG) preferentially affect males and prognosis is bleak; however, they are more common in a younger population. While current therapy for cerebellar and supratentorial HGG is the same, recent molecular analyses have identified features and subclasses of cerebellar tumors that may merit individualized targeting.
View Article and Find Full Text PDFDiffuse midline gliomas (DMG) are a highly aggressive and universally fatal subgroup of pediatric tumors responsible for the majority of childhood brain tumor deaths. Median overall survival is less than 12 months with a 90% mortality rate at 2 years from diagnosis. Research into the underlying tumor biology and numerous clinical trials have done little to change the invariably poor prognosis.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common primary adult intracranial malignancy and carries a dismal prognosis despite an aggressive multimodal treatment regimen that consists of surgical resection, radiation, and adjuvant chemotherapy. Radiographic evaluation, largely informed by magnetic resonance imaging (MRI), is a critical component of initial diagnosis, surgical planning, and post-treatment monitoring. However, conventional MRI does not provide information regarding tumor microvasculature, necrosis, or neoangiogenesis.
View Article and Find Full Text PDFThough outcomes for pediatric cancer patients have significantly improved over the past several decades, too many children still experience poor outcomes and survivors suffer lifelong, debilitating late effects after conventional chemotherapy, radiation, and surgical treatment. Consequently, there has been a renewed focus on developing novel targeted therapies to improve survival outcomes. Cancer vaccines are a promising type of immunotherapy that leverage the immune system to mediate targeted, tumor-specific killing through recognition of tumor antigens, thereby minimizing off-target toxicity.
View Article and Find Full Text PDFIn order to analyze how a signal transduction network converts cellular inputs into cellular outputs, ideally one would measure the dynamics of many signals within the network simultaneously. We found that, by fusing a fluorescent reporter to a pair of self-assembling peptides, it could be stably clustered within cells at random points, distant enough to be resolved by a microscope but close enough to spatially sample the relevant biology. Because such clusters, which we call signaling reporter islands (SiRIs), can be modularly designed, they permit a set of fluorescent reporters to be efficiently adapted for simultaneous measurement of multiple nodes of a signal transduction network within single cells.
View Article and Find Full Text PDFBrain tumors represent the most common pediatric solid neoplasms and leading cause of childhood cancer-related morbidity and mortality. Although most adult brain tumors are supratentorial and arise in the cerebrum, the majority of pediatric brain tumors are infratentorial and arise in the posterior fossa, specifically the cerebellum. Outcomes from malignant cerebellar tumors are unacceptable despite aggressive treatments (surgery, radiation, and/or chemotherapy) that are harmful to the developing brain.
View Article and Find Full Text PDFImmunotherapy with oncolytic herpes simplex virus-1 therapy offers an innovative, targeted, less-toxic approach for treating brain tumors. However, a major obstacle in maximizing oncolytic virotherapy is a lack of comprehensive understanding of the underlying mechanisms that unfold in CNS tumors/associated microenvironments after infusion of virus. We demonstrate that our multiplex biomarker screening platform comprehensively informs changes in both topographical location and functional states of resident/infiltrating immune cells that play a role in neuropathology after treatment with HSV G207 in a pediatric Phase 1 patient.
View Article and Find Full Text PDFFluorescence guided surgery (FGS) has fueled the development of novel technologies aimed at maximizing the utility of fluorescence imaging to help clinicians diagnose and in certain cases treat diseases across a breadth of disciplines such as dermatology, gynecology, oncology, ophthalmology, and neurosurgery. In neurosurgery, the goal of FGS technologies is to provide the neurosurgeon with additional information which can serve as a visual aid to better identify tumor tissue and associated margins. Yet, current clinical FGS technologies are qualitative in nature, limiting the ability to make accurate, reliable, and repeatable measurements.
View Article and Find Full Text PDFObjective: 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) fluorescence is an effective surgical adjunct for the intraoperative identification of tumor tissue during resection of high-grade gliomas. The use of 5-ALA-induced PpIX fluorescence in glioblastoma (GBM) has been shown to double the extent of gross-total resection and 6-month progression-free survival. The heterogeneity of 5-ALA-induced PpIX fluorescence observed during surgery presents a technical and diagnostic challenge when utilizing this tool intraoperatively.
View Article and Find Full Text PDFIntroduction: 5-aminolevulinic acid induced protoporphyrin IX (5-ALA-PpIX) fluorescence guidance has emerged as a valuable surgical adjunct for resection of intracranial tumors.
Methods: Here we present a focused review on 5-ALA-PpIX fluorescence guidance for meningiomas.
Results: We discuss the clinical studies and specific applications to date as well as the two main intraoperative fluorescence technologies applied to meningiomas.
OBJECTIVE Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy was recently approved for use in the treatment of medication-refractory essential tremor (ET). Previous work has described lesion appearance and volume on MRI up to 6 months after treatment. Here, the authors report on the volumetric segmentation of the thalamotomy lesion and associated edema in the immediate postoperative period and 1 year following treatment, and relate these radiographic characteristics with clinical outcome.
View Article and Find Full Text PDFFocused ultrasound (FUS) has been under investigation for neurosurgical applications since the 1940s. Early experiments demonstrated ultrasound as an effective tool for the creation of intracranial lesions; however, they were limited by the need for craniotomy to avoid trajectory damage and wave distortion by the skull, and they also lacked effective techniques for monitoring. Since then, the development and hemispheric distribution of phased arrays has resolved the issue of the skull and allowed for a completely transcranial procedure.
View Article and Find Full Text PDF