Publications by authors named "Pablo A Pasten"

Background: Trihalomethanes (THM), a major class of disinfection by-products, are widespread and are associated with adverse health effects. We conducted a global evaluation of current THM regulations and concentrations in drinking water.

Methods: We included 120 countries (∼7000 million inhabitants in 2016), representing 94% of the world population.

View Article and Find Full Text PDF

Lack of access to safe drinking water is a global problem, and methods to reliably and easily detect contaminants could be transformative. We report the development of a cell-free in vitro transcription system that uses RNA Output Sensors Activated by Ligand Induction (ROSALIND) to detect contaminants in water. A combination of highly processive RNA polymerases, allosteric protein transcription factors and synthetic DNA transcription templates regulates the synthesis of a fluorescence-activating RNA aptamer.

View Article and Find Full Text PDF

Hypochlorous acid has been reported as the main oxidant agent responsible for the corrosion of copper plumbing systems in chlorinated water supplies. However, there is little information about chlorine consumption kinetics in a combined system (i.e.

View Article and Find Full Text PDF

The occurrence of toxic metals and metalloids associated with mine tailings is a serious public health concern for communities living in mining areas. This work explores the relationship between metal occurrence (e.g.

View Article and Find Full Text PDF

Biological arsenic oxidation has been suggested as a key biogeochemical process that controls the mobilization and fate of this metalloid in aqueous environments. To the best of our knowledge, only four aerobic chemolithoautotrophic arsenite-oxidizing (CAO) bacteria have been shown to grow via direct arsenic oxidation and to have the essential genes for chemolithoautotrophic arsenite oxidation. In this study, a new CAO bacterium was isolated from a high Andean watershed evidencing natural dissolved arsenic attenuation.

View Article and Find Full Text PDF

Corrosion of copper pipes may release high amounts of copper into the water, exceeding the maximum concentration of copper for drinking water standards. Typically, the events with the highest release of copper into drinking water are related to the presence of biofilms. This article reviews this phenomenon, focusing on copper ingestion and its health impacts, the physicochemical mechanisms and the microbial involvement on copper release, the techniques used to describe and understand this phenomenon, and the hydrodynamic effects.

View Article and Find Full Text PDF

Urban expansion in areas of active and legacy mining imposes a sustainability challenge, especially in arid environments where cities compete for resources with agriculture and industry. The city of Copiapó, with 150,000 inhabitants in the Atacama Desert, reflects this challenge. More than 30 abandoned tailings from legacy mining are scattered throughout its urban and peri-urban area, which include an active copper smelter.

View Article and Find Full Text PDF

Water erosion is a leading cause of soil degradation and a major nonpoint source pollution problem. Many efforts have been undertaken to estimate the amount and size distribution of the sediment leaving the field. Multi-size class water erosion models subdivide eroded soil into different sizes and estimate the aggregate's composition based on empirical equations derived from agricultural soils.

View Article and Find Full Text PDF

Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms.

View Article and Find Full Text PDF

Microbially influenced corrosion (MIC) is recognized as an unusual and severe type of corrosion that causes costly failures around the world. A microbial biofilm could enhance the copper release from copper plumbing into the water by forming a reactive interface. The biofilm increases the corrosion rate, the mobility of labile copper from its matrix and the detachment of particles enriched with copper under variable shear stress due to flow conditions.

View Article and Find Full Text PDF

Rivers in northern Chile have arsenic (As) concentrations at levels that are toxic for humans and other organisms. Microorganism-mediated redox reactions have a crucial role in the As cycle; the microbial oxidation of As (As(III) to As(V)) is a critical transformation because it favors the immobilization of As in the solid phase. We studied the role of microbial As oxidation for controlling the mobility of As in the extreme environment found in the Chilean Altiplano (i.

View Article and Find Full Text PDF

Fluvial sediments from two lower Loa River basin sites in northern Chile were compared in order to probe the effects of vegetation and organic matter (OM) on As accumulation in fluvial environments. The two sites were the Sloman dam, which lacks macrophytes and has a low OM content (2.4%) in sediments, and the Quillagua Oasis, which is 23 km downstream from the Sloman site and has a higher OM (6.

View Article and Find Full Text PDF

Traditional studies of copper release in plumbing systems assume that the water extracted from a pipe follows a plug-type flow and that the pipe surface does not interact with the bulk water under flow conditions. We characterized actual stagnation-flushing cycles in a household pipe undergoing corrosion in the presence of a microbial biofilm. The mass of copper released in 10 experiments was on average 8 times the value estimated by using the plug-flow assumption.

View Article and Find Full Text PDF

A large number of microorganisms are responsible for the oxidation of Mn(2+)((aq)) to insoluble Mn(3+/4+) oxides (MnO(x)()) in natural aquatic systems. This paper reports the structure of the biogenic MnO(x)(), including a quantitative analysis of cation vacancies, formed by the freshwater bacterium Leptothrix discophora SP6 (SP6-MnO(x)()). The structure and the morphology of SP6-MnO(x)() were characterized by transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS), including full multiple-scattering analysis, and powder X-ray diffraction (XRD).

View Article and Find Full Text PDF

We describe the characterization of an unknown and difficult to identify but geochemically and environmentally significant MnOx structure produced by a freshwater bacterium, Leptothrix discophora SP-6, using combined transmission electron microscopy (TEM), extended X-ray absorption fine structure (EXAFS), and UV Raman spectroscopy. The large surface-to-volume ratio of the needle-shaped nanocrystalline MnO2 formed around the bacterial cells coupled to the porous, zeolite-like structure has the potential to catalyze reactions and oxidize and adsorb metals.

View Article and Find Full Text PDF