A new, selective way to form C-C bonds has been developed. In this report, we disclose the homolytic aromatic substitution via C→O transposition coupled with the elimination of formaldehyde (as a traceless linker). Computational analysis indicates the selectivity can be tuned by sterics in the starting materials following an ipso-attack that leads to the C→O transposition.
View Article and Find Full Text PDFCellulose accounts for approximately half of photosynthesis-fixed carbon; however, the ecology of its degradation in soil is still relatively poorly understood. The role of actinobacteria in cellulose degradation has not been extensively investigated despite their abundance in soil and known cellulose degradation capability. Here, the diversity and abundance of the actinobacterial glycoside hydrolase family 48 (cellobiohydrolase) gene in soils from three paired pasture-woodland sites were determined by using terminal restriction fragment length polymorphism (T-RFLP) analysis and clone libraries with gene-specific primers.
View Article and Find Full Text PDF