Publications by authors named "Paban V"

Impact Statement: This study addresses the pressing issue of subjective cognitive decline in aging populations by investigating neurofeedback (NFB) as a potential early therapeutic intervention. By evaluating the efficacy of individualised NFB training compared to standard protocols, tailored to each participant's EEG profile, it provides novel insights into personalised treatment approaches. The incorporation of innovative elements and rigorous analytical techniques contributes to advancing our understanding of NFB's modulatory effects on EEG frequencies and cognitive function in aging individuals.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how resting-state brain networks are linked to creativity using high-density electroencephalography (HD-EEG) in 90 healthy participants who completed a creative behavior inventory.
  • - Researchers employed machine learning techniques to analyze brain connectivity patterns, finding significant differences in functional connectivity in the gamma frequency band related to high and low creativity levels.
  • - Their predictive model demonstrated good accuracy in forecasting individual creativity scores and was validated with a separate dataset, suggesting potential biomarkers for creativity based on brain networks.
View Article and Find Full Text PDF

Memory complaints are highly prevalent among middle-aged and older adults, and they are frequently reported in individuals experiencing subjective cognitive decline (SCD). SCD has received increasing attention due to its implications for the early detection of dementia. This study aims to advance our comprehension of individuals with SCD by elucidating potential cognitive/psychologic-contributing factors and characterizing cerebral hubs within the brain network.

View Article and Find Full Text PDF

Cognitive functioning evolves throughout life. Regular practice of stimulating activities maintains or even strengthens cognitive skills. This study investigated the effects of a cognitive training programme based on complex closed-ended problem solving on innovative thinking.

View Article and Find Full Text PDF

Studies related to creativity generally investigate cognition and brain functioning linked to creative achievement. However, this approach does not allow characterization of creative potential. To better define creative potential, we studied cognitive function related to creative processes and the associated brain resting functional connectivity.

View Article and Find Full Text PDF

The human brain is a dynamic modular network that can be decomposed into a set of modules, and its activity changes continually over time. At rest, several brain networks, known as Resting-State Networks (RSNs), emerge and cross-communicate even at sub-second temporal scale. Here, we seek to decipher the fast reshaping in spontaneous brain modularity and its relationships with RSNs.

View Article and Find Full Text PDF

Identifying the neural substrates underlying the personality traits is a topic of great interest. On the other hand, it is now established that the brain is a dynamic networked system that can be studied by using functional connectivity techniques. However, much of the current understanding of personality-related differences in functional connectivity has been obtained through the stationary analysis, which does not capture the complex dynamical properties of brain networks.

View Article and Find Full Text PDF

We aimed at identifying the potential relationship between the dynamical properties of the human functional network at rest and one of the most prominent traits of personality, namely resilience. To tackle this issue, we used resting-state EEG data recorded from 45 healthy subjects. Resilience was quantified using the 10-item Connor-Davidson Resilience Scale (CD-RISC).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how different coping styles (active vs. passive) impact brain networks at rest using EEG data.
  • The research finds that active coping strategies are positively associated with psychological well-being, and various brain regions are involved in these coping processes.
  • Results indicate that passive copers display enhanced global brain efficiency, while active copers show notable activity in the superior temporal gyrus at specific brain frequencies.
View Article and Find Full Text PDF

The identification of common gene/protein profiles related to brain alterations, if they exist, may indicate the convergence of the pathogenic mechanisms driving brain disorders. Six genetically engineered mouse lines modelling neurodegenerative diseases and neuropsychiatric disorders were considered. Omics approaches, including transcriptomic and proteomic methods, were used.

View Article and Find Full Text PDF

Subjective cognitive impairment (SCI) is defined by a state of subjective complaint, without objective cognitive deterioration. Amnestic mild cognitive impairment (A-MCI), which characterizes a syndrome between normal cognitive aging and early Alzheimer's disease (E-AD), is preceded by A-MCI from many years. SCI expresses a metacognitive impairment.

View Article and Find Full Text PDF

Multifactorial cognitive training programs have a positive effect on cognition in healthy older adults. Among the age-sensitive cognitive domains, episodic memory is the most affected. In the present study, we evaluated the benefits on episodic memory of a computer-based memory and attention training.

View Article and Find Full Text PDF

Methylene blue (MB) belongs to the phenothiazinium family. It has been used to treat a variety of human conditions and has beneficial effects on the central nervous system in rodents with and without brain alteration. The present study was designed to test whether chronic MB treatment taken after (therapeutic effect) or before (preventive effect) the onset of beta-amyloid pathology influences cognition in a transgenic mouse model (APP/PS1).

View Article and Find Full Text PDF

Inbred LOU/C/Jall rats are currently described as a model of successful aging. These rats have a longer healthy median lifespan than many other strains, do not develop obesity, diabetes, or tumor and more importantly they do not show cognitive decline with aging. This is the first study to examine gene expression changes in the inbred LOU/C/Jall rat hippocampus and frontal cortex.

View Article and Find Full Text PDF

Considering the high risk for individuals with amnestic Mild Cognitive Impairment (A-MCI) to progress towards Alzheimer's disease (AD), we investigated the efficacy of a non-pharmacological intervention, that is, cognitive training that could reduce cognitive difficulties and delay the cognitive decline. For this, we evaluated the efficacy of a 12-week computer-based memory-attention training program based on recognition in subjects with A-MCI and compared their performances with those of A-MCI controls trained in cognitively stimulating activities. The effect of training was assessed by comparing outcome measures in pre- and post-tests 15 days before and after training.

View Article and Find Full Text PDF

Early brain damage, such as white matter damage (WMD), resulting from perinatal hypoxia-ischemia in preterm and low birth weight infants represents a high risk factor for mortality and chronic disabilities, including sensory, motor, behavioral and cognitive disorders. In previous studies, we developed a model of WMD based on prenatal ischemia (PI), induced by unilateral ligation of uterine artery at E17 in pregnant rats. We have shown that PI reproduced some of the main deficits observed in preterm infants, such as white and gray matter damage, myelination deficits, locomotor, sensorimotor, and short-term memory impairments, as well as related musculoskeletal and neuroanatomical histopathologies [1-3].

View Article and Find Full Text PDF

The prefrontal cortex is essential for a wide variety of higher functions, including attention and memory. Cholinergic neurons are thought to be of prime importance in the modulation of these processes. Degeneration of forebrain cholinergic neurons has been linked to several neurological disorders.

View Article and Find Full Text PDF

Introduction: The early diagnosis of Alzheimer's disease is a new challenge. This study concerns 50 patients, 34 females (68 %) and 16 males (32 %) with Alzheimer (AD), according to NINCDS-ADRDA diagnostic criteria.

Objectives: To systematically evaluate in all patients behavioral and psychological signs and symptoms of dementia (BPSSD), according to the stage of AD, with the patients of our population separated into two MMS groups.

View Article and Find Full Text PDF

The time course of metabolic changes was investigated in the hippocampus and the parietal, rhinal and frontal cortices of rats from 4 to 30 months old. Samples were analysed by the solid-state high-resolution magic angle spinning nuclear magnetic resonance method. Quantification was performed with the quest procedure of jMRUI software.

View Article and Find Full Text PDF

The cholinergic neuronal system, through its projections to the hippocampus, plays an important role in learning and memory. The aim of the study was to identify genes and networks in rat hippocampus with and without memory deficit. Genome-scale screening was used to analyze gene expression changes in rats submitted or not to intraparenchymal injection of 192 IgG-saporin and trained in spatial/object novelty tasks.

View Article and Find Full Text PDF

The aim of this study was to determine the neurobiological bases of behavioral deficits associated with cholinergic damage and the potential of long-term environmental enrichment as a therapeutic agent. Rats were submitted to intra-structures injection of 192 IgG-saporin and then behaviorally tested 1 month and 1 year post-lesion in a nonmatching-to-position task. The gene expression changes were assessed by cDNA macroarray technology using the GE array Q series designed to profile the expression of neurotrophic signaling molecules.

View Article and Find Full Text PDF

The aim of this study was to determine the brain structures as well as the plasticity events associated with the behavioral effects of cholinergic damage. Rats were submitted to injection of 192 IgG-saporin in the medial septum/diagonal band of Broca complex and the nucleus basalis magnocellularis. The immunohistochemical expression of c-Fos protein and PSA-NCAM (polysialylated neural cell adhesion molecule) and the behavioral performances in the nonmatching-to-position task were assessed at various post-lesion times.

View Article and Find Full Text PDF

It has been proposed that visual recognition memory and certain attentional mechanisms are impaired early in Alzheimer disease (AD). Little is known about visuospatial recognition memory in AD. The crucial role of the hippocampus on spatial memory and its damage in AD suggest that visuospatial recognition memory may also be impaired early.

View Article and Find Full Text PDF

The interactive effects of age and cholinergic damage were assessed behaviorally in young and middle-aged rats. Rats were lesioned at either 3 or 17 months of age by injection of 192 IgG-saporin immunotoxin into the medial septum and the nucleus basalis magnocellularis, and they were then tested on a range of behavioral tasks: a nonmatching-to-position task in a T-maze, an object-recognition task, an object-location task, and an open-field activity test. Depending on the task used, only an age or a lesion effect was observed, but there was no Age X Lesion interaction.

View Article and Find Full Text PDF

The present experiment was designed to study changes in behavior following immunolesioning of the basal forebrain cholinergic system. Rats were lesioned at 3 months of age by injection of the 192 IgG-saporin immunotoxin into the medial septum area and the nucleus basalis magnocellularis, and then tested at different times after surgery (from days 7-500) on a range of behavioral tests, administered in the following order: a nonmatching-to-position task in a T-maze, an object-recognition task, an object-location task, and an open-field activity test. The results revealed a two-way interaction between post-lesion behavioral testing time and memory demands.

View Article and Find Full Text PDF