The vast repository of van der Waals (vdW) materials supporting polaritons offers numerous possibilities to tailor electromagnetic waves at the nanoscale. The development of twistoptics-the modulation of the optical properties by twisting stacks of vdW materials-enables directional propagation of phonon polaritons (PhPs) along a single spatial direction, known as canalization. Here we demonstrate a complementary type of directional propagation of polaritons by reporting the visualization of unidirectional ray polaritons (URPs).
View Article and Find Full Text PDFNonlinear-optical microscopy and spectroscopy provide detailed spatial and spectroscopic contrast, specifically sensitive to structural symmetry and order. Ferroics, in particular, have been widely studied using second harmonic generation imaging, which provides detailed information on domain structures but typically lacks spectroscopic detail. In contrast, infrared-visible sum-frequency generation (SFG) spectroscopy reveals details of the atomic structure and bonding via vibrational resonances, but conventionally lacks spatial information.
View Article and Find Full Text PDFPhonon polaritons enable waveguiding and localization of infrared light with extreme confinement and low losses. The spatial propagation and spectral resonances of such polaritons are usually probed with complementary techniques such as near-field optical microscopy and far-field reflection spectroscopy. Here, infrared-visible sum-frequency spectro-microscopy is introduced as a tool for spectroscopic imaging of phonon polaritons.
View Article and Find Full Text PDFNonlinear (vibrational) microscopy has emerged as a successful tool for the investigation of molecular systems as it combines label-free chemical characterization with spatial resolution on the sub-micron scale. In addition to the molecular recognition, the physics of the nonlinear interactions allows in principle to obtain structural information on the molecular level such as molecular orientations. Due to technical limitations such as the relatively complex imaging geometry with the required oblique sample irradiation and insufficient sensitivity of the instrument this detailed molecular information is typically not accessible using widefield imaging.
View Article and Find Full Text PDFExtreme anisotropy in some polaritonic materials enables light propagation with a hyperbolic dispersion, leading to enhanced light-matter interactions and directional transport. However, these features are typically associated with large momenta that make them sensitive to loss and poorly accessible from far-field, being bound to the material interface or volume-confined in thin films. Here, we demonstrate a new form of directional polaritons, leaky in nature and featuring lenticular dispersion contours that are neither elliptical nor hyperbolic.
View Article and Find Full Text PDFNat Nanotechnol
January 2023
Various optical crystals possess permittivity components of opposite signs along different principal directions in the mid-infrared regime, exhibiting exotic anisotropic phonon resonances. Such materials with hyperbolic polaritons-hybrid light-matter quasiparticles with open isofrequency contours-feature large-momenta optical modes and wave confinement that make them promising for nanophotonic on-chip technologies. So far, hyperbolic polaritons have been observed and characterized in crystals with high symmetry including hexagonal (boron nitride), trigonal (calcite) and orthorhombic (α-MoO or α-VO) crystals, where they obey certain propagation patterns.
View Article and Find Full Text PDFThe lattice symmetry of a crystal is one of the most important factors in determining its physical properties. Particularly, low-symmetry crystals offer powerful opportunities to control light propagation, polarization and phase. Materials featuring extreme optical anisotropy can support a hyperbolic response, enabling coupled light-matter interactions, also known as polaritons, with highly directional propagation and compression of light to deeply sub-wavelength scales.
View Article and Find Full Text PDFThe ultrafast dynamics of the octahedral rotation in Ca:SrTiO_{3} is studied by time-resolved x-ray diffraction after photoexcitation over the band gap. By monitoring the diffraction intensity of a superlattice reflection that is directly related to the structural order parameter of the soft-mode driven antiferrodistortive phase in Ca:SrTiO_{3}, we observe an ultrafast relaxation on a 0.2 ps timescale of the rotation of the oxygen octahedron, which is found to be independent of the initial temperature despite large changes in the corresponding soft-mode frequency.
View Article and Find Full Text PDFTo gain control over magnetic order on ultrafast time scales, a fundamental understanding of the way electron spins interact with the surrounding crystal lattice is required. However, measurement and analysis even of basic collective processes such as spin-phonon equilibration have remained challenging. Here, we directly probe the flow of energy and angular momentum in the model insulating ferrimagnet yttrium iron garnet.
View Article and Find Full Text PDFWe report the first observation of epsilon-near-zero (ENZ) phonon polaritons in an ultrathin AlN film fully hybridized with surface phonon polaritons (SPhP) supported by the adjacent SiC substrate. Employing a strong coupling model for the analysis of the dispersion and electric field distribution in these hybridized modes, we show that they share the most prominent features of the two precursor modes. The novel ENZ-SPhP coupled polaritons with a highly propagative character and deeply subwavelength light confinement can be utilized as building blocks for future infrared and terahertz nanophotonic integration and communication devices.
View Article and Find Full Text PDFIn stimulated Raman scattering, two incident optical waves induce a force oscillating at the difference of the two light frequencies. This process has enabled important applications such as the excitation and coherent control of phonons and magnons by femtosecond laser pulses. Here, we experimentally and theoretically demonstrate the so far neglected up-conversion counterpart of this process: THz sum-frequency excitation of a Raman-active phonon mode, which is tantamount to two-photon absorption by an optical transition between two adjacent vibrational levels.
View Article and Find Full Text PDFWe report on the strong enhancement of mid-infrared second-harmonic generation (SHG) from SiC nanopillars due to the resonant excitation of localized surface phonon polaritons within the Reststrahlen band. A strong dependence of the SHG enhancement upon the optical mode distribution was observed. One such mode, the monopole, exhibits an enhancement that is beyond what is anticipated from field localization and dispersion of the linear and nonlinear SiC optical properties.
View Article and Find Full Text PDFThe investigation of ultrafast electronic and structural dynamics in low-dimensional systems such as nanowires and two-dimensional materials requires femtosecond probes providing high spatial resolution and strong interaction with small volume samples. Low-energy electrons exhibit large scattering cross-sections and high sensitivity to electric fields, but their pronounced dispersion during propagation in vacuum so far prevented their use as femtosecond probe pulses in time-resolved experiments. Here, employing a laser-triggered point-like source of either divergent or collimated electron wave packets, we developed a hybrid approach for femtosecond point projection microscopy and femtosecond low-energy electron diffraction.
View Article and Find Full Text PDFWe investigate the influence of carrier cooling dynamics in TiO(2) on the excited-state potential energy surface along the A(1g) optical phonon coordinate after above band-gap excitation using ultrashort ultraviolet pulses. The large amplitude coherent oscillation observed in a pump-probe transient reflectivity measurement shows a phase shift of -0.2π with respect to a purely instantaneous displacive excitation.
View Article and Find Full Text PDFThe linear and two-dimensional infrared (2DIR) responses of the amide I vibrational mode in liquid formamide are investigated experimentally and theoretically using molecular dynamics simulations. The recent method based on the numerical integration of the Schrödinger equation is employed to calculate the 2DIR spectra. Special attention is devoted to the interplay of the structural dynamics and the excitonic nature of the amide I modes in determining the optical response of the studied system.
View Article and Find Full Text PDFA simulation formalism for the nonlinear response of vibrational excitons is presented and applied to the OH stretching vibrations of neat liquid H(2)O. The method employs numerical integration of the Schrodinger equation and allows explicit treatment of fluctuating transition frequencies, vibrational couplings, dipole moments, and the anharmonicities of all these quantities, as well as nonadiabatic effects. The split operator technique greatly increases computational feasibility and performance.
View Article and Find Full Text PDFA detailed understanding of chemical processes requires information about both structure and dynamics. By definition, a reaction involves nonstationary states and is a dynamic process. Structure describes the atomic positions at global minima in the nuclear potential energy surface.
View Article and Find Full Text PDFTwo-dimensional infrared photon echo and pump probe studies of the OH stretch vibration provide a sensitive probe of the correlations and couplings in the hydrogen bond network of liquid water. The nonlinear response is simulated using numerical integration of the Schrodinger equation with a Hamiltonian constructed to explicitly treat intermolecular coupling and nonadiabatic effects in the highly disordered singly and doubly excited vibrational exciton manifolds. The simulated two-dimensional spectra are in close agreement with our recent experimental results.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2008
Two-dimensional infrared photon-echo measurements of the OH stretching vibration in liquid H2O are performed at various temperatures. Spectral diffusion and resonant energy transfer occur on a time scale much shorter than the average hydrogen bond lifetime of approximately 1 ps. Room temperature measurements show a loss of frequency and, thus, structural correlations on a 50-fs time scale.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
August 1990
Transient electroretinograms to a reversing color-contrast checkerboard pattern (P-ERG) were recorded in a protanomalous, a deuteranomalous, and a normal observer. Alternate monochromatic checks were of constant wavelength (630 nm red-531 nm green), while the relative energies were varied systematically. When changing the radiance ratio 630 nm-531 nm of the stimulus, the normal subject exhibited a P-ERG to all stimuli with only a relative amplitude minimum at a distinct radiance ratio, whereas the color-deficient observers failed to show a P-ERG at some color contrast 630 nm-531 nm, the radiance ratio of which was different in the protan and deutan.
View Article and Find Full Text PDFDoc Ophthalmol
May 1989
Pattern electroretinograms were elicited in 13 normal eyes by half-field checkerboard stimulation of nasal-temporal and upper-lower retinal areas. With nasal-temporal visual half-field stimulation the p-q component amplitude of the nasal hemiretina was significantly larger than that of the temporal hemiretina. With upper-lower visual half-field stimulation the amplitude was significantly larger for the upper than for the lower hemiretina.
View Article and Find Full Text PDF