Publications by authors named "Paajanen A"

Purpose: To assess the potential for accelerating continuous-wave (CW) T dispersion measurement with compressed sensing approach via studying the effect that the data reduction has on the ability to detect differences between intact and degenerated articular cartilage with different spin-lock amplitudes and to assess quantitative bias due to acceleration.

Methods: Osteochondral plugs (n = 27, 4 mm diameter) from femur (n = 14) and tibia (n = 13) regions from human cadaver knee joints were obtained from commercial biobank (Science Care, USA) under Ethical permission 134/2015. MRI of specimens was performed at 9.

View Article and Find Full Text PDF

Knowledge of the relative performance of the well-known sparse and low-rank compressed sensing models with 3D radial quantitative magnetic resonance imaging acquisitions is limited. We use 3D radial T relaxation time mapping data to compare the total variation, low-rank, and Huber penalty function approaches to regularization to provide insights into the relative performance of these image reconstruction models. Simulation and ex vivo specimen data were used to determine the best compressed sensing model as measured by normalized root mean squared error and structural similarity index.

View Article and Find Full Text PDF

The purpose of this study was to determine how to control and measure the hierarchical swelling in pulp fibers via electrostatic interactions and localized osmotic pressure. A eutectic solvent system was used to systematically increase phosphate groups in the cell wall. Increase in fiber charge led to an increase in swelling properties, as expected.

View Article and Find Full Text PDF

Understanding nanoscale moisture interactions is fundamental to most applications of wood, including cellulosic nanomaterials with tailored properties. By combining X-ray scattering experiments with molecular simulations and taking advantage of computed scattering, we studied the moisture-induced changes in cellulose microfibril bundles of softwood secondary cell walls. Our models reproduced the most important experimentally observed changes in diffraction peak locations and widths and gave new insights into their interpretation.

View Article and Find Full Text PDF

Quantitative MRI (qMRI) methods allow reducing the subjectivity of clinical MRI by providing numerical values on which diagnostic assessment or predictions of tissue properties can be based. However, qMRI measurements typically take more time than anatomical imaging due to requiring multiple measurements with varying contrasts for, e.g.

View Article and Find Full Text PDF

Objective: The population in many countries is becoming more diverse. The number of people from foreign backgrounds is growing in Finland as well. The aim of this study was to better understand how the foreign background of a patient affects the dentist's work.

View Article and Find Full Text PDF

Background: A child's long-term illness or disability is always a serious matter that impacts the whole family. Costs related to an illness can substantially affect a family's financial situation. To date, there is little research on how parents experience available support for financial assistance.

View Article and Find Full Text PDF

Molecular-scale interactions between water and cellulose microfibril bundles in plant cell walls are not fully understood, despite their crucial role for many applications of plant biomass. Recent advances in X-ray and neutron scattering analysis allow more accurate interpretation of experimental data from wood cell walls. At the same time, microfibril bundles including hemicelluloses and water can be modelled at atomistic resolution.

View Article and Find Full Text PDF

We carried out large-scale atomistic molecular dynamics simulations to study the growth of twin lamellar crystals of polyethylene initiated by small crystal seeds. By examining the size distribution of the stems-straight crystalline polymer segments-we show that the crystal edge has a parabolic profile. At the growth front, there is a layer of stems too short to be stable, and new stable stems are formed within this layer, leading to crystal growth.

View Article and Find Full Text PDF

We describe herein a nanocellulose-alginate hydrogel suitable for 3D printing. The composition of the hydrogel was optimized based on material characterization methods and 3D printing experiments, and its behavior during the printing process was studied using computational fluid dynamics simulations. The hydrogel was biofunctionalized by the covalent coupling of an enhanced avidin protein to the cellulose nanofibrils.

View Article and Find Full Text PDF

The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration.

View Article and Find Full Text PDF