Thermal sensation is a fundamental sense initiated by the activity of primary afferent thermoreceptors. While considerable attention has been paid to the encoding of noxious temperatures by thermoreceptors, it is far less clear how they encode innocuous cool and warm which are more commonly encountered in the environment. To address this, we sampled the entire thermoreceptor population using two-photon calcium imaging in the lumbar dorsal root ganglia of awake and anesthetized mice.
View Article and Find Full Text PDFThe reversal potential refers to the membrane potential at which the net current flow through a channel reverses direction. The reversal potential is determined by transmembrane ion gradients and, in turn, determines how the channel's activity will affect the membrane potential. Traditional investigation into the reversal potential of inhibitory ligand-gated ion channels (E) has relied upon the activation of endogenous receptors, such as the GABA-A receptor (GABAR).
View Article and Find Full Text PDFRecent evidence suggests that primary sensory cortical regions play a role in the integration of information from multiple sensory modalities. How primary cortical neurons integrate different sources of sensory information is unclear, partly because non-primary sensory input to a cortical sensory region is often weak or modulatory. To address this question, we take advantage of the robust representation of thermal (cooling) and tactile stimuli in mouse forelimb primary somatosensory cortex (fS1).
View Article and Find Full Text PDFAlthough distinct thalamic nuclei encode sensory information for almost all sensory modalities, the existence of a thalamic representation of temperature with a role in thermal perception remains unclear. To address this, we performed high-density electrophysiological recordings across the entire forelimb somatosensory thalamus in awake mice, and identified an anterior and a posterior representation of temperature that spans three thalamic nuclei. We found that these parallel representations show fundamental differences in the cellular encoding of temperature which reflects their cortical output targets.
View Article and Find Full Text PDFPrevious work identified nociceptive Schwann cells that can initiate pain. Consistent with the existence of inherently mechanosensitive sensory Schwann cells, we found that in mice, the mechanosensory function of almost all nociceptors, including those signaling fast pain, were dependent on sensory Schwann cells. In polymodal nociceptors, sensory Schwann cells signal mechanical, but not cold or heat pain.
View Article and Find Full Text PDFThe patch-clamp technique has revolutionized neurophysiology by allowing to study single neuronal excitability, synaptic connectivity, morphology, and the transcriptomic profile. However, the throughput in recordings is limited because of the manual replacement of patch-pipettes after each attempt which are often also unsuccessful. This has been overcome by automated cleaning the tips in detergent solutions, allowing to reuse the pipette for further recordings.
View Article and Find Full Text PDFTemperature is a fundamental sensory modality separate from touch, with dedicated receptor channels and primary afferent neurons for cool and warm. Unlike for other modalities, however, the cortical encoding of temperature remains unknown, with very few cortical neurons reported that respond to non-painful temperature, and the presence of a 'thermal cortex' is debated. Here, using widefield and two-photon calcium imaging in the mouse forepaw system, we identify cortical neurons that respond to cooling and/or warming with distinct spatial and temporal response properties.
View Article and Find Full Text PDFIn the thermal system, skin cooling is represented in the primary somatosensory cortex (S1) and the posterior insular cortex (pIC). Whether S1 and pIC are nodes in anatomically separate or overlapping thermal sensorimotor pathways is unclear, as the brain-wide connectivity of the thermal system has not been mapped. We address this using functionally targeted, dual injections of anterograde viruses or retrograde tracers into the forelimb representation of S1 (fS1) and pIC (fpIC).
View Article and Find Full Text PDFIt has long been known that orofacial movements for feeding can be triggered, coordinated, and often rhythmically organized at the level of the brainstem, without input from higher centers. We uncover two nuclei that can organize the movements for ingesting fluids in mice. These neuronal groups, IRt and Peri5, are marked by expression of the pan-autonomic homeobox gene Phox2b and are located, respectively, in the intermediate reticular formation of the medulla and around the motor nucleus of the trigeminal nerve.
View Article and Find Full Text PDFFingertip mechanoreceptors comprise sensory neuron endings together with specialized skin cells that form the end-organ. Exquisitely sensitive, vibration-sensing neurons are associated with Meissner's corpuscles in the skin. In the present study, we found that USH2A, a transmembrane protein with a very large extracellular domain, was found in terminal Schwann cells within Meissner's corpuscles.
View Article and Find Full Text PDFOptical microscopy is an indispensable tool in biomedical sciences, but its reach in deep tissues is limited due to aberrations and scattering. This problem can be overcome by wavefront-shaping techniques, albeit at limited fields of view (FOVs). Inspired by astronomical imaging, conjugate wavefront shaping can lead to an increased field of view in microscopy, but this correction is limited to a set depth and cannot be dynamically adapted.
View Article and Find Full Text PDFHumans detect skin temperature changes that are perceived as warm or cool. Like humans, mice report forepaw skin warming with perceptual thresholds of less than 1°C and do not confuse warm with cool. We identify two populations of polymodal C-fibers that signal warm.
View Article and Find Full Text PDFSmall ruminants not only differ on mammary gland anatomy, milk's properties and the amount of milk yielded comparable to those of dairy cattle, but also on the milking routine strategies and machine milking settings to maximize daily milk secretion. The udder compartment is proportionally larger in dairy sheep and goats, which requires modifications in the milking machine settings, milking procedures and allows the use of different milking strategies as they better tolerate extension of milking intervals. Depending on the breed, cisternal milk in goats varies from 70% to 90%, whereas in dairy sheep it varies from 50% to 78% of the total gland capacity.
View Article and Find Full Text PDFAlthough we know a great deal about monosynaptic connectivity, transmission and integration in the mammalian nervous system from studies, very little is known . This is partly because it is technically difficult to evoke action potentials and simultaneously record small amplitude subthreshold responses in closely (<150 μm) located pairs of neurons. To address this, we have developed two-photon targeted multiple (2-4) whole-cell patch clamp recordings of nearby neurons in superficial cortical layers 1-3.
View Article and Find Full Text PDFCortical neurons process information on a background of spontaneous, ongoing activity with distinct spatiotemporal profiles defining different cortical states. During wakefulness, cortical states alter constantly in relation to behavioral context, attentional level or general motor activity. In this review article, we will discuss our current understanding of cortical states in awake rodents, how they are controlled, their impact on sensory processing, and highlight areas for future research.
View Article and Find Full Text PDFExcitatory synaptic input reaches the soma of a cortical excitatory pyramidal neuron via anatomically segregated apical and basal dendrites. In vivo, dendritic inputs are integrated during depolarized network activity, but how network activity affects apical and basal inputs is not understood. Using subcellular two-photon stimulation of Channelrhodopsin2-expressing layer 2/3 pyramidal neurons in somatosensory cortex, nucleus-specific thalamic optogenetic stimulation, and paired recordings, we show that slow, depolarized network activity amplifies small-amplitude synaptic inputs targeted to basal dendrites but reduces the amplitude of all inputs from apical dendrites and the cell soma.
View Article and Find Full Text PDFThermal information about skin surface temperature is a key sense for the perception of object identity and valence. The identification of ion channels involved in the transduction of thermal changes has provided a genetic access point to the thermal system. However, from sensory specific 'labeled-lines' to multimodal interactive pathways, the functional organization and identity of the neural circuits mediating innocuous thermal perception have been debated for over 100 years.
View Article and Find Full Text PDFA defining feature of cortical layer 2/3 excitatory neurons is their sparse activity, often firing in singlets of action potentials. Local inhibitory neurons are thought to play a major role in regulating sparseness, but which cell types are recruited by single excitatory synaptic inputs is unknown. Using multiple, targeted, in vivo whole-cell recordings, we show that single EPSPs have little effect on the firing rates of excitatory neurons and somatostatin-expressing GABA-ergic inhibitory neurons but evoke precisely timed action potentials in parvalbumin-expressing inhibitory neurons.
View Article and Find Full Text PDFSleep, waking, locomotion, and attention are associated with cell-type-specific changes in neocortical activity. The effect of brain state on circuit output requires understanding of how neuromodulators influence specific neuronal classes and their synapses, with normal patterns of neuromodulator release from endogenous sources. We investigated the state-dependent modulation of a ubiquitous feedforward inhibitory motif in mouse sensory cortex, local pyramidal (Pyr) inputs onto somatostatin (SST)-expressing interneurons.
View Article and Find Full Text PDFThe control of targeted reaching is thought to be shaped by distinct subtypes of local GABAergic inhibitory neurons in primary forelimb motor cortex (M1). However, little is known about their action potential firing dynamics during reaching. To address this, we recorded the activity of parvalbumin-expressing (PV+) GABAergic neurons identified from a larger population of fast-spiking units and putative excitatory regular-spiking units in layer 5 of the mouse forelimb M1 during an M1-dependent, sensory-triggered reaching task.
View Article and Find Full Text PDFThe skin is equipped with specialized mechanoreceptors that allow the perception of the slightest brush. Indeed, some mechanoreceptors can detect even nanometer-scale movements. Movement is transformed into electrical signals via the gating of mechanically activated ion channels at sensory endings in the skin.
View Article and Find Full Text PDFThe synchronized activity of six layers of cortical neurons is critical for sensory perception and the control of voluntary behavior, but little is known about the synaptic mechanisms of cortical synchrony across layers in behaving animals. We made single and dual whole-cell recordings from the primary somatosensory forepaw cortex in awake mice and show that L2/3 and L5 excitatory neurons have layer-specific intrinsic properties and membrane potential dynamics that shape laminar-specific firing rates and subthreshold synchrony. First, while sensory and movement-evoked synaptic input was tightly correlated across layers, spontaneous action potentials and slow spontaneous subthreshold fluctuations had laminar-specific timing; second, longer duration forepaw movement was associated with a decorrelation of subthreshold activity; third, spontaneous and sensory-evoked forepaw movements were signaled more strongly by L5 than L2/3 neurons.
View Article and Find Full Text PDFLittle is known about the properties of monosynaptic connections between identified neurons in vivo. We made multiple (two to four) two-photon targeted whole-cell recordings from neighboring layer 2 mouse somatosensory barrel cortex pyramidal neurons in vivo to investigate excitatory monosynaptic transmission in the hyperpolarized downstate. We report that pyramidal neurons form a sparsely connected (6.
View Article and Find Full Text PDF