Phys Rev Lett
February 2024
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics
May 1999
We have designed and produced hot, millimeter-scale, high-Z plasmas of interest for National Ignition Facility hohlraum target design. Using a high-Z gas fill produces electron temperatures in the 3.5-6-keV range, the highest temperatures measured to date for high-density (10(21) e/cm(3)) laser-heated plasmas, and much higher than the 3 keV found for low-Z (neopentane) fills.
View Article and Find Full Text PDFInertial confinement fusion implosions using capsules with two concentric shells separated by a low density region (double shells) are reported which closely follow one dimensional (1D) radiatively driven hydrodynamics simulations. Capsule designs which mitigate Au M-band radiation asymmetries appear to correspond more closely to 1D simulations than targets lacking mitigation of hohlraum drive M-band nonuniformities. One capsule design achieves over 50% of the unperturbed 1D calculated yield at a convergence ratio of 25.
View Article and Find Full Text PDFPhys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics
March 1996