Publications by authors named "PJ Steinhardt"

Article Synopsis
  • * Shock recovery experiments replicate the extreme conditions (high pressure, high temperature) and rapid processes necessary to study quasicrystal formation, but current results show these lab-synthesized quasicrystals differ significantly from their stable forms created at lower pressures.
  • * Previous studies highlight the complexity of shock experiments, revealing both potential and challenges in understanding quasicrystals, and the authors suggest future research should focus on refining shock conditions to better analyze their properties.
View Article and Find Full Text PDF

In photonic crystals, the propagation of light is governed by their photonic band structure, an ensemble of propagating states grouped into bands, separated by photonic band gaps. Due to discrete symmetries in spatially strictly periodic dielectric structures their photonic band structure is intrinsically anisotropic. However, for many applications, such as manufacturing artificial structural color materials or developing photonic computing devices, but also for the fundamental understanding of light-matter interactions, it is of major interest to seek materials with long range nonperiodic dielectric structures which allow the formation of photonic band gaps.

View Article and Find Full Text PDF

Hyperuniform point patterns can be classified by the hyperuniformity scaling exponent α>0, that characterizes the power-law scaling behavior of the structure factor S(k) as a function of wave number k≡|k| in the vicinity of the origin, e.g., S(k)∼|k|^{α} in cases where S(k) varies continuously with k as k→0.

View Article and Find Full Text PDF

We show that it is possible for fermion condensation of the Nambu-Jona-Lasinio type to induce a nonsingular bounce that smoothly connects a phase of slow contraction to a phase of expansion. A chiral condensate-a nonzero vacuum expectation value of the spinor bilinear ⟨Ψ[over ¯]Ψ⟩-can form spontaneously after a slow contraction phase smooths and flattens the universe and the Ricci curvature exceeds a critical value. In this approach, a high density of spin-aligned free fermions is not required, which avoids the problem of generating a large anisotropy and initiating chaotic mixmaster behavior during the bounce phase.

View Article and Find Full Text PDF

We report the discovery of a dodecagonal quasicrystal MnSiCrAlNi-composed of a periodic stacking of atomic planes with quasiperiodic translational order and 12-fold symmetry along the two directions perpendicular to the planes-accidentally formed by an electrical discharge event in an eolian dune in the Sand Hills near Hyannis, Nebraska, United States. The quasicrystal, coexisting with a cubic crystalline phase with composition MnSiNiCrAl, was found in a fulgurite consisting predominantly of fused and melted sand along with traces of melted conductor metal from a nearby downed power line. The fulgurite may have been created by a lightning strike that combined sand with material from downed power line or from electrical discharges from the downed power line alone.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on understanding how band gaps form in disordered materials when electromagnetic or elastic waves propagate, particularly as the size of the system increases.
  • The research employs a two-stage ensemble method to investigate complete photonic band gaps (PBGs) across various two-dimensional photonic network solids, revealing that most disordered systems see their band gaps close as they get larger.
  • However, certain hyperuniform systems show unique characteristics where the band gaps remain open and exhibit a power-law scaling similar to that found in photonic crystals at the thermodynamic limit.
View Article and Find Full Text PDF

If dark energy is a form of quintessence driven by a scalar field ϕ evolving down a monotonically decreasing potential V(ϕ) that passes sufficiently below zero, the universe is destined to undergo a series of smooth transitions. The currently observed accelerated expansion will cease; soon thereafter, expansion will come to end altogether; and the universe will pass into a phase of slow contraction. In this paper, we consider how short the remaining period of expansion can be given current observational constraints on dark energy.

View Article and Find Full Text PDF

Through an extensive series of high-precision numerical computations of the optimal complete photonic band gap (PBG) as a function of dielectric contrast α for a variety of crystal and disordered heterostructures, we reveal striking universal behaviors of the gap sensitivity S(α)≡dΔ(α)/dα, the first derivative of the optimal gap-to-midgap ratio Δ(α). In particular, for all our crystal networks, S(α) takes a universal form that is well approximated by the analytic formula for a 1D quarter-wave stack, S_{QWS}(α). Even more surprisingly, the values of S(α) for our disordered networks converge to S_{QWS}(α) for sufficiently large α.

View Article and Find Full Text PDF

The first test explosion of a nuclear bomb, the Trinity test of 16 July 1945, resulted in the fusion of surrounding sand, the test tower, and copper transmission lines into a glassy material known as "trinitite." Here, we report the discovery, in a sample of red trinitite, of a hitherto unknown composition of icosahedral quasicrystal, SiCuCaFe It represents the oldest extant anthropogenic quasicrystal currently known, with the distinctive property that its precise time of creation is indelibly etched in history. Like the naturally formed quasicrystals found in the Khatyrka meteorite and experimental shock syntheses of quasicrystals, the anthropogenic quasicrystals in red trinitite demonstrate that transient extreme pressure-temperature conditions are suitable for the synthesis of quasicrystals and for the discovery of new quasicrystal-forming systems.

View Article and Find Full Text PDF

We introduce a hyperuniform-disordered platform for the realization of near-infrared photonic devices on a silicon-on-insulator platform, demonstrating the functionality of these structures in a flexible silicon photonics integrated circuit platform unconstrained by crystalline symmetries. The designs proposed advantageously leverage the large, complete, and isotropic photonic band gaps provided by hyperuniform disordered structures. An integrated design for a compact, sub-volt, sub-fJ/bit, hyperuniform-clad, electrically controlled resonant optical modulator suitable for fabrication in the silicon photonics ecosystem is presented along with simulation results.

View Article and Find Full Text PDF

We show that it is possible to construct foam-based heterostructures with complete photonic band gaps. Three-dimensional foams are promising candidates for the self-organization of large photonic networks with combinations of physical characteristics that may be useful for applications. The largest band gap found is based on 3D Weaire-Phelan foam, a structure that was originally introduced as a solution to the Kelvin problem of finding the 3D tessellation composed of equal-volume cells that has the least surface area.

View Article and Find Full Text PDF

This work considers the scaling properties characterizing the hyperuniformity (or anti-hyperuniformity) of long-wavelength fluctuations in a broad class of one-dimensional substitution tilings. A simple argument is presented which predicts the exponent α governing the scaling of Fourier intensities at small wavenumbers, tilings with α > 0 being hyperuniform, and numerical computations confirm that the predictions are accurate for quasiperiodic tilings, tilings with singular continuous spectra and limit-periodic tilings. Quasiperiodic or singular continuous cases can be constructed with α arbitrarily close to any given value between -1 and 3.

View Article and Find Full Text PDF

We report the discovery of AlNiFe, the first natural known periodic crystalline approximant to decagonite (AlNiFe), a natural quasicrystal composed of a periodic stack of planes with quasiperiodic atomic order and ten-fold symmetry. The new mineral has been approved by the International Mineralogical Association (IMA 2018-038) and officially named proxidecagonite, which derives from its identity to periodic approximant of decagonite. Both decagonite and proxidecagonite were found in fragments from the Khatyrka meteorite.

View Article and Find Full Text PDF

We study a continuum of photonic quasicrystal heterostructures derived from local isomorphism (LI) classes of pentagonal quasicrystal tilings. These tilings are obtained by direct projection from a five-dimensional hypercubic lattice. We demonstrate that, with the sole exception of the Penrose LI class, all other LI classes result in degenerate, effectively localized states, with precisely predictable and tunable properties (frequencies, frequency splittings, and densities).

View Article and Find Full Text PDF

Five-component icosahedral quasicrystals with compositions in the range AlFeCuCrNi were recently recovered after shocking metallic CuAl and (MgFe)SiO olivine in a stainless steel 304 chamber, intended to replicate a natural shock that affected the Khatyrka meteorite. The iron in those quasicrystals might have originated either from reduction of Fe in olivine or from the stainless steel chamber. In this study, we clarify the shock synthesis mechanism of icosahedral quasicrystals through two new shock recovery experiments.

View Article and Find Full Text PDF

The Khatyrka meteorite contains both icosahedral and decagonal quasicrystals. In our previous studies, icosahedral quasicrystals have been synthesized and recovered from shock experiments at the interface between CuAl and stainless steel 304 alloys. In this study, we report a new shock recovery experiment aimed at synthesizing decagonal quasicrystals similar to decagonite, natural AlNiFe.

View Article and Find Full Text PDF

We report on a fragment of the quasicrystal-bearing CV3 carbonaceous chondrite Khatyrka recovered from fine-grained, clay-rich sediments in the Koryak Mountains, Chukotka (Russia). We show higher melting-point silicate glass cross-cutting lower melting-point Al-Cu-Fe alloys, as well as unambiguous evidence of a reduction-oxidation reaction history between Al-Cu-Fe alloys and silicate melt. The redox reactions involve reduction of FeO and SiO to Fe and Fe-Si metal, and oxidation of metallic Al to AlO, occurring where silicate melt was in contact with Al-Cu-Fe alloys.

View Article and Find Full Text PDF

Hyperuniformity is the suppression of long-wavelength density fluctuations, relative to typical structurally disordered systems. In this paper, we examine how the degree of hyperuniformity [[Formula: see text]] in quasicrystals depends on the local isomorphism class. By studying the continuum of pentagonal quasicrystal tilings obtained by direct projection from a five-dimensional hypercubic lattice, we find that [Formula: see text] is dominantly determined by the local distribution of vertex environments (e.

View Article and Find Full Text PDF

We report the first occurrence of an icosahedral quasicrystal with composition AlCuFe, outside the measured equilibrium stability field at standard pressure of the previously reported Al-Cu-Fe quasicrystal (AlCuFe, with x between 61 and 64, y between 24 and 26, z between 12 and 13%). The new icosahedral mineral formed naturally and was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite that experienced shock metamorphism, local melting (with conditions exceeding 5 GPa and 1,200 °C in some locations), and rapid cooling, all of which likely resulted from impact-induced shock in space. This is the first example of a quasicrystal composition discovered in nature prior to being synthesized in the laboratory.

View Article and Find Full Text PDF

One of the fundamental questions of theoretical cosmology is whether the Universe can undergo a nonsingular bounce, i.e., smoothly transit from a period of contraction to a period of expansion through violation of the null energy condition (NEC) at energies well below the Planck scale and at finite values of the scale factor such that the entire evolution remains classical.

View Article and Find Full Text PDF

We designed a plate impact shock recovery experiment to simulate the starting materials and shock conditions associated with the only known natural quasicrystals, in the Khatyrka meteorite. At the boundaries among CuAl5, (Mg0.75Fe(2+) 0.

View Article and Find Full Text PDF

We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite.

View Article and Find Full Text PDF

The first natural-occurring quasicrystal, icosahedrite, was recently discovered in the Khatyrka meteorite, a new CV3 carbonaceous chondrite. Its finding raised fundamental questions regarding the effects of pressure and temperature on the kinetic and thermodynamic stability of the quasicrystal structure relative to possible isochemical crystalline or amorphous phases. Although several studies showed the stability at ambient temperature of synthetic icosahedral AlCuFe up to ~35 GPa, the simultaneous effect of temperature and pressure relevant for the formation of icosahedrite has been never investigated so far.

View Article and Find Full Text PDF