The absolute scale of the neutrino mass plays a critical role in physics at every scale, from the subatomic to the cosmological. Measurements of the tritium end-point spectrum have provided the most precise direct limit on the neutrino mass scale. In this Letter, we present advances by Project 8 to the cyclotron radiation emission spectroscopy (CRES) technique culminating in the first frequency-based neutrino mass limit.
View Article and Find Full Text PDFWe report on the direct search for cosmic relic neutrinos using data acquired during the first two science campaigns of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity molecular tritium gas source are analyzed by a high-resolution MAC-E filter around the end point at 18.57 keV.
View Article and Find Full Text PDFWe report on the light sterile neutrino search from the first four-week science run of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are analyzed by a high-resolution MAC-E filter down to 40 eV below the endpoint at 18.57 keV.
View Article and Find Full Text PDFWe report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.
View Article and Find Full Text PDFThe Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-β decay in ^{76}Ge. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.
View Article and Find Full Text PDFIt has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer.
View Article and Find Full Text PDFOver a period of four years, beginning in spring 1988, a previously healthy man developed a primary squamous cell carcinoma of the tonsil, treated with radiotherapy, followed by 10 distinct, primary bronchial squamous cell carcinomas. Four of the cancers were surgically resected, all of which were positive by hybridization for human papilloma virus (type 16). Following the institution of alpha interferon, three smaller lesions disappeared and a larger one shrank in size, facilitating surgical resection.
View Article and Find Full Text PDFThe Sudbury Neutrino Observatory has precisely determined the total active (nu(x)) 8B solar neutrino flux without assumptions about the energy dependence of the nu(e) survival probability. The measurements were made with dissolved NaCl in heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.
View Article and Find Full Text PDFData from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to "invisible" modes, such as n-->3nu. The analysis was based on a search for gamma rays from the deexcitation of the residual nucleus that would result from the disappearance of either a proton or neutron from 16O. A limit of tau(inv)>2 x 10(29) yr is obtained at 90% confidence for either neutron- or proton-decay modes.
View Article and Find Full Text PDFThe Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted 8B spectrum, the night minus day rate is 14.0%+/-6.
View Article and Find Full Text PDFObservations of neutral-current nu interactions on deuterium in the Sudbury Neutrino Observatory are reported. Using the neutral current (NC), elastic scattering, and charged current reactions and assuming the standard 8B shape, the nu(e) component of the 8B solar flux is phis(e) = 1.76(+0.
View Article and Find Full Text PDFSolar neutrinos from (8)B decay have been detected at the Sudbury Neutrino Observatory via the charged current (CC) reaction on deuterium and the elastic scattering (ES) of electrons. The flux of nu(e)'s is measured by the CC reaction rate to be straight phi(CC)(nu(e)) = 1.75 +/- 0.
View Article and Find Full Text PDFPhys Rev D Part Fields
January 1993
Phys Rev D Part Fields
January 1991