Publications by authors named "PH Jouneau"

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging has demonstrated great potential for metabolic imaging; however, achieving sufficiently high lateral and mass resolution to reach the organelle scale remains challenging. To address this, we have developed an approach that combines imaging acquisitions close to the highest lateral resolution (<150 nm) and mass resolution (9,000) reachable by ToF-SIMS. The data were then merged and processed using multivariate analysis (MVA), providing the identification and annotation of 85% of the main contributors to the multivariate analysis components at high lateral resolution.

View Article and Find Full Text PDF

Plants and algae have to adapt to environmental changes and face various stresses that negatively affect their growth and development. One common stress is phosphate (Pi) deficiency, which is often present in the environment at limiting levels. In response to Pi deficiency, these organisms increase Pi uptake and remobilize intracellular Pi.

View Article and Find Full Text PDF

Pyrenoids are subcompartments of algal chloroplasts that increase the efficiency of Rubisco-driven CO fixation. Diatoms fix up to 20% of global CO, but their pyrenoids remain poorly characterized. Here, we used in vivo photo-crosslinking to identify pyrenoid shell (PyShell) proteins, which we localized to the pyrenoid periphery of model pennate and centric diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana.

View Article and Find Full Text PDF

Semiconductor nanowires (NWs) are believed to play a crucial role for future applications in electronics, spintronics and quantum technologies. A potential candidate is HgTe but its sensitivity to nanofabrication processes restrain its development. A way to circumvent this obstacle is the selective area growth technique.

View Article and Find Full Text PDF

Bacterial spores owe their incredible resistance capacities to molecular structures that protect the cell content from external aggressions. Among the determinants of resistance are the quaternary structure of the chromosome and an extracellular shell made of proteinaceous layers (the coat), the assembly of which remains poorly understood. Here, in situ cryo-electron tomography on lamellae generated by cryo-focused ion beam micromachining provides insights into the ultrastructural organization of Bacillus subtilis sporangia.

View Article and Find Full Text PDF

Sanguina nivaloides is the main alga forming red snowfields in high mountains and Polar Regions. It is non-cultivable. Analysis of environmental samples by X-ray tomography, focused-ion-beam scanning-electron-microscopy, physicochemical and physiological characterization reveal adaptive traits accounting for algal capacity to reside in snow.

View Article and Find Full Text PDF

The streptophyte green algal class Zygnematophyceae is the immediate sister lineage to land plants. Their special form of sexual reproduction via conjugation might have played a key role during terrestrialization. Thus, studying Zygnematophyceae and conjugation is crucial for understanding the conquest of land.

View Article and Find Full Text PDF

Quantum dots (QDs) are widely used in optoelectronics, lighting, and photovoltaics leading to their potential release into the environment. The most promising alternative to the highly toxic cadmium selenide (CdSe) QDs are indium phosphide (InP) QDs, which show reduced toxicity and comparable optical and electronic properties. QD degradation leads to the release of toxic metal ions into the environment.

View Article and Find Full Text PDF

Germanium is a promising active material for high energy density anodes in Li-ion batteries thanks to its good Li-ion conduction and mechanical properties. However, a deep understanding of the (de)lithiation mechanism of Ge requires advanced characterizations to correlate structural and chemical evolution during charge and discharge. Here we report a combined X-ray diffraction (XRD) and Li solid-state NMR investigation performed on crystalline germanium nanoparticles (c-Ge Nps) based anodes during partial and complete cycling at C/10 Li metal.

View Article and Find Full Text PDF

Quantum dots (QDs) are colloidal fluorescent semiconductor nanocrystals with exceptional optical properties. Their widespread use, particularly in light-emitting diodes (LEDs), displays, and photovoltaics, is questioning their potential toxicity. The most widely used QDs are CdSe and CdTe QDs, but due to the toxicity of cadmium (Cd), their use in electrical and electronic equipment is now restricted in the European Union through the Restriction of hazardous substances in electrical and electronic equipment (RoHS) directive.

View Article and Find Full Text PDF

The outer layer of the pollen grain, the exine, plays a key role in the survival of terrestrial plant life. However, the exine structure in different groups of plants remains enigmatic. Here, modern and fossil coniferous bisaccate pollen were examined to investigate the detailed three-dimensional structure and properties of the pollen wall.

View Article and Find Full Text PDF

Metals are essential for life and their concentration and distribution in organisms are tightly regulated. Indeed, in their free form, most transition metal ions are toxic. Therefore, an excess of physiologic metal ions or the uptake of non-physiologic metal ions can be highly detrimental to the organism.

View Article and Find Full Text PDF

We recently presented the elaboration and functional properties of a new generation of hybrid membranes for PEMFC applications showing promising performances and durability. The strategy was to form, inside a commercial sPEEK membrane, sol-gel (SG) synthesis, a reactive SG phase able to reduce oxidative species generated during FC operation. In order to understand structure-properties interplay, we use a combination of direct space (AFM/3D FIB-SEM) and reciprocal space (SANS/WAXS) techniques to cover dimensional scales ranging from a hundred to few nanometers.

View Article and Find Full Text PDF
Article Synopsis
  • Eukaryotic phytoplankton, despite their small biomass, are crucial for primary production and influencing climate, yet their cellular adaptability remains underexplored.
  • A study using 3D morphometric analysis shows that key organelles in phytoplankton maintain consistent volume ratios, suggesting they adapt their structures based on energy needs.
  • When exposed to different light conditions, phytoplankton like Phaeodactylum and Nannochloropsis adjust their organelle configurations and interactions, highlighting their evolutionary adaptations for energy management and environmental responses.
View Article and Find Full Text PDF

Cross-sectional submicronic Laue diffraction has been successfully applied to HgCdTe/CdZnTe heterostructures to provide accurate strain profiles from substrate to surface. Combined with chemical-sensitive techniques, this approach allows correlation of lattice-mismatch, interface compositional gradient and strain while isolating specific layer contributions which would otherwise be averaged using conventional X-ray diffraction. The submicronic spatial resolution allowed by the synchrotron white beam size is particularly suited to complex infrared detector designed structures such as dual-color detectors.

View Article and Find Full Text PDF

Advanced anode material designs utilizing dual phase alloy systems like Si/FeSi nano-composites show great potential to decrease the capacity degrading and improve the cycling capability for Lithium (Li)-ion batteries. Here, we present a multi-scale characterization approach to understand the (de-)lithiation and irreversible volumetric changes of the amorphous silicon (a-Si)/crystalline iron-silicide (c-FeSi) nanoscale phase and its evolution due to cycling, as well as their impact on the proximate pore network. Scattering and 2D/3D imaging techniques are applied to probe the anode structural ageing from nm to μm length scales, after up to 300 charge-discharge cycles, and combined with modeling using the collected image data as an input.

View Article and Find Full Text PDF

Silicon (Si) is the most promising anode candidate for the next generation of lithium-ion batteries but difficult to cycle due to its poor electronic conductivity and large volume change during cycling. Nanostructured Si-based materials allow high loading and cycling stability but remain a challenge for process and engineering. We prepare a Si nanowires-grown-on-graphite one-pot composite (Gt-SiNW) a simple and scalable route.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are efficient biocides increasingly used in consumer products and medical devices. Their activity is due to their capacity to release bioavailable Ag(i) ions making them long-lasting biocides but AgNPs themselves are usually easily released from the product. Besides, AgNPs are highly sensitive to various chemical environments that triggers their transformation, decreasing their activity.

View Article and Find Full Text PDF

Failure mechanisms associated with silicon-based anodes are limiting the implementation of high-capacity lithium-ion batteries. Understanding the aging mechanism that deteriorates the anode performance and introducing novel-architectured composites offer new possibilities for improving the functionality of the electrodes. Here, the characterization of nano-architectured composite anode composed of active amorphous silicon domains (a-Si, 20 nm) and crystalline iron disilicide (c-FeSi , 5-15 nm) alloyed particles dispersed in a graphite matrix is reported.

View Article and Find Full Text PDF

Liver is pivotal in organism metabolism. This organ is receiving nutriments from the portal vein and then storing, metabolizing, distributing in the circulation or excreting excess and xenobiotics in bile. Liver architecture and hepatocyte polarization are crucial to achieve these functions.

View Article and Find Full Text PDF

Correlation between off-axis electron holography and atom probe tomography (APT) provides morphological, chemical and electrical information about Mg doping (p-type) in gallium nitride (GaN) layers that have been grown at different temperatures at a nanometric scale. APT allows access to the three-dimensional distribution of atoms and their chemical nature. In particular, this technique allows visualisation of the Mg-rich clusters observed in p-doped GaN layers grown by metal-organic chemical vapour deposition.

View Article and Find Full Text PDF

The (de)lithiation process and resulting atomic and nanoscale morphological changes of an a-Si/c-FeSi/graphite composite negative electrode are investigated within a Li-ion full cell at several current rates (C-rates) and after prolonged cycling by simultaneous synchrotron wide-angle and small-angle X-ray scattering (WAXS and SAXS). WAXS allows the probing of the local crystalline structure. In particular, the observation of the graphite (de)lithiation process, revealed by the LiC Bragg reflections, enables access to the respective capacities of both graphite and active silicon.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the photosymbiosis between single-celled hosts and microalgae, particularly how these interactions function and benefit the host in oceanic environments.
  • Researchers found that when microalgae (specifically Phaeocystis) are integrated into their acantharian hosts, they undergo significant structural and physiological changes, including blocked cell division and enhanced photosynthesis.
  • The findings suggest that the host supplies essential nutrients and trace metals to the algae, indicating a mutualistic relationship where the host 'farms' the microalgae for energy while altering their growth dynamics.
View Article and Find Full Text PDF

Internal chloroplast structures present complex and various characteristics, which are still largely undetermined due to insufficient imaging investigation. Information on chloroplast morphology has traditionally been collected using light microscopy (LM), confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) techniques. However, recent technological progresses in the field of microscopy have made it possible to visualize the internal structure of chloroplast in far greater detail and in 3D.

View Article and Find Full Text PDF

We report the observation of spin-to-charge current conversion in strained mercury telluride at room temperature, using spin pumping experiments. We show that a HgCdTe barrier can be used to protect the HgTe from direct contact with the ferromagnet, leading to very high conversion rates, with inverse Edelstein lengths up to 2.0±0.

View Article and Find Full Text PDF