Publications by authors named "PH Diamond"

Inhomogeneous mixing by stationary convective cells set in a fixed array is a particularly simple route to layering. Layered profile structures, or staircases, have been observed in many systems, including drift-wave turbulence in magnetic confinement devices. The simplest type of staircase occurs in passive-scalar advection, due to the existence and interplay of two disparate timescales, the cell turn-over (τ_{H}), and the cell diffusion (τ_{D}) time.

View Article and Find Full Text PDF

has a tubular bilayered epithelial body column with a dome-shaped head on one end and a foot on the other. lacks a permanent mouth: its head epithelium is sealed. Upon neuronal activation, a mouth opens at the apex of the head which can exceed the body column diameter in seconds, allowing to ingest prey larger than itself.

View Article and Find Full Text PDF

Magnetohydrodynamic turbulence on a β plane with an in-plane mean field, a system which serves as a simple model for the solar tachocline, is investigated analytically and computationally. We first derive two useful analytic constraints: We express the mean turbulent cross-helicity in terms of the mean turbulent magnetic energy, and then show that (for weak turbulence) the time-averaged momentum transport in the system can be expressed in terms of the cross-helicity spectrum. We then complete a closure of the system using weak turbulence theory, appropriately extended to a system with multiple interacting eigenmodes.

View Article and Find Full Text PDF

Electric field profile structure-especially its shear-is a natural order parameter for the edge plasma, and characterizes confinement regimes ranging from the H-mode (Wagner 1982 , 1408-1412 (doi:10.1103/PhysRevLett.49.

View Article and Find Full Text PDF

Asexual freshwater planarians reproduce by transverse bisection (binary fission) into two pieces. This process produces a head and a tail, which fully regenerate within 1-2 weeks. How planarians split into two offspring-using only their musculature and substrate traction-is a challenging biomechanics problem.

View Article and Find Full Text PDF

We show that the radial electric field (E_{r}) plays a dual role in edge magnetohydrodynamics (MHD) activity. While E_{r} shear (first spatial derivative of E_{r}) dephases radial velocity and displacement, and so is stabilizing, a new finding here is that E_{r} curvature (second spatial derivative of E_{r}) tends to synchronize the radial velocity and displacement, and so destabilizes MHD. As a highlighted result, we analytically demonstrate that E_{r} curvature can destabilize an otherwise stable kink mode, and so form a joint vortex-kink mode.

View Article and Find Full Text PDF

A central problem of turbulence theory is to produce a predictive model for turbulent fluxes. These have profound implications for virtually all aspects of the turbulence dynamics. In magnetic confinement devices, drift-wave turbulence produces anomalous fluxes via cross-correlations between fluctuations.

View Article and Find Full Text PDF

Hydra is a small freshwater polyp capable of regeneration from small tissue pieces and from aggregates of cells. During regeneration, a hollow bilayered sphere is formed that undergoes osmotically driven shape oscillations of inflation and rupture. These oscillations are necessary for successful regeneration.

View Article and Find Full Text PDF

This Rapid Communication identifies the physical mechanism for the quench of turbulent resistivity in two-dimensional magnetohydrodynamics. Without an imposed, ordered magnetic field, a multiscale, blob-and-barrier structure of magnetic potential forms spontaneously. Magnetic energy is concentrated in thin, linear barriers, located at the interstices between blobs.

View Article and Find Full Text PDF

This study traces the emergence of sheared axial flow from collisional drift-wave turbulence with broken symmetry in a linear plasma device-the controlled shear decorrelation experiment. As the density profile steepens, the axial Reynolds stress develops and drives a radially sheared axial flow that is parallel to the magnetic field. Results show that the nondiffusive piece of the Reynolds stress is driven by the density gradient, results from spectral asymmetry of the turbulence, and, thus, is dynamical in origin.

View Article and Find Full Text PDF

We study the evolution of the concentration field in a single eddy in the two-dimensional (2D) Cahn-Hilliard system to better understand scalar mixing processes in that system. This study extends investigations of the classic studies of flux expulsion in 2D magnetohydrodynamics and homogenization of potential vorticity in 2D fluids. Simulation results show that there are three stages in the evolution: (A) formation of a "jelly roll" pattern, for which the concentration field is constant along spirals; (B) a change in isoconcentration contour topology; and (C) formation of a target pattern, for which the isoconcentration contours follow concentric annuli.

View Article and Find Full Text PDF

Asexual freshwater planarians reproduce by tearing themselves into two pieces by a process called binary fission. The resulting head and tail pieces regenerate within about a week, forming two new worms. Understanding this process of ripping oneself into two parts poses a challenging biomechanical problem.

View Article and Find Full Text PDF

A calculation which describes the spin-up of toroidal plasmas by the radial propagation of turbulence fronts with broken parallel symmetry is presented. The associated flux of parallel momentum is calculated by using a two-scale direct-interaction approximation in the weak turbulence limit. We show that fluctuation momentum spreads faster than mean flow momentum.

View Article and Find Full Text PDF

Continuous plasma coherent emission is maintained by repetitive Langmuir collapse driven by the nonlinear evolution of a strong electron two-stream instability. The Langmuir waves are modulated by solitary waves in the linear stage and electrostatic whistler waves in the nonlinear stage. Modulational instability leads to Langmuir collapse and electron heating that fills in cavitons.

View Article and Find Full Text PDF

This Rapid Communication sets forth the mechanism by which mesoscale staircase structures condense to form macroscopic states of enhanced confinement. Density, vorticity, and turbulent potential enstrophy are the variables for this model. Formation of the staircase structures is due to inhomogeneous mixing of (generalized) potential vorticity (PV).

View Article and Find Full Text PDF

The synchronization of geodesic acoustic modes (GAMs) and magnetic fluctuations is identified in the edge plasmas of the HL-2A tokamak. Mesoscale electric fluctuations (MSEFs) having components of a dominant GAM, and m/n=6/2 potential fluctuations are found at the same frequency as that of the magnetic fluctuations of m/n=6/2 (m and n are poloidal and toroidal mode numbers, respectively). The temporal evolutions of the MSEFs and the magnetic fluctuations clearly show the frequency entrainment and the phase lock between the GAM and the m/n=6/2 magnetic fluctuations.

View Article and Find Full Text PDF

A detailed systematic derivation of a logarithmically discretized model for two-dimensional turbulence is given, starting from the basic fluid equations and proceeding with a particular form of discretization of the wave-number space. We show that it is possible to keep all or a subset of the interactions, either local or disparate scale, and recover various limiting forms of shell models used in plasma and geophysical turbulence studies. The method makes no use of the conservation laws even though it respects the underlying conservation properties of the fluid equations.

View Article and Find Full Text PDF

A new, frequency modulation mechanism for zonal flow pattern formation is presented. The model predicts the probability distribution function of the flow strength as well as the evolution of the characteristic spatial scale. Magnetic toroidicity-induced global phase dynamics is shown to determine the spatial structure of the flow.

View Article and Find Full Text PDF

This Letter presents the first observation on the interplay between nonlocal transport and neoclassical tearing modes (NTMs) during transient nonlocal heat transport events in the HL-2A tokamak. The nonlocality is triggered by edge cooling and large-scale, inward propagating avalanches. These lead to a locally enhanced pressure gradient at the q = 3/2 (or 2/1) rational surface and hence the onset of the NTM in relatively low β plasmas (βN < 1).

View Article and Find Full Text PDF

The dual cascade of enstrophy and energy in quasi-two-dimensional turbulence strongly suggests that a viscous but otherwise potential vorticity (PV) conserving system decays selectively toward a state of minimum potential enstrophy. We derive a nonperturbative mean field theory for the dynamics of minimum enstrophy relaxation by constructing an expression for PV flux during the relaxation process. The theory is used to elucidate the structure of anisotropic flows emerging from the selective decay process.

View Article and Find Full Text PDF

We demonstrate that E×B shear, V_{E×B}^{'}, governs the dynamics of the cross phase of the peeling-ballooning-(PB-)mode-driven heat flux, and so determines the evolution from the edge-localized (ELMy) H mode to the quiescent (Q) H mode. A physics-based scaling of the critical E×B shearing rate (V_{E×B,cr}^{'}) for accessing the QH mode is predicted. The ELMy H mode to the QH-mode evolution is shown to follow from the conversion from a phase locked state to a phase slip state.

View Article and Find Full Text PDF

Turbulence in hot magnetized plasmas is shown to generate permeable localized transport barriers that globally organize into the so-called "ExB staircase" [G. Dif-Pradalier et al., Phys.

View Article and Find Full Text PDF

We present a theory of turbulent elasticity, a property of drift-wave-zonal-flow (DW-ZF) turbulence, which follows from the time delay in the response of DWs to ZF shears. An emergent dimensionless parameter |〈v〉'|/Δωk is found to be a measure of the degree of Fickian flux-gradient relation breaking, where |〈v〉'| is the ZF shearing rate and Δωk is the turbulence decorrelation rate. For |〈v〉'|/Δωk>1, we show that the ZF evolution equation is converted from a diffusion equation, usually assumed, to a telegraph equation, i.

View Article and Find Full Text PDF

Application of lower hybrid (LH) current drive in tokamak plasmas can induce both co- and countercurrent directed changes in toroidal rotation, depending on the core q profile. For discharges with q(0) <1, rotation increments in the countercurrent direction are observed. If the LH-driven current is sufficient to suppress sawteeth and increase q(0) above unity, the core toroidal rotation change is in the cocurrent direction.

View Article and Find Full Text PDF