Publications by authors named "PG Whitehead"

Background: This study aims to elucidate ancestry-specific changes to the genomic regulatory architecture in induced pluripotent stem cell (iPSC)-derived oligodendroglia, focusing on their implications for Alzheimer's disease (AD). This work addresses the lack of diversity in previous iPSC studies by including ancestries that contribute to African American (European/African) and Hispanic/Latino populations (Amerindian/African/European).

Methods: We generated 12 iPSC lines-four African, four Amerindian, and four European- from both AD patients and non-cognitively impaired individuals, with varying genotypes ( and ).

View Article and Find Full Text PDF

Greater Dhaka area is home to large industrial clusters that are driving economic growth and the poverty reduction efforts of Bangladesh. These clusters are located around peripheral rivers- Turag, Buriganga, Dhaleswari, Balu, Shitalakhya, Bangshi, and Tongi-Khal, which are important for water transport, environment, and eco-systems where flooding of floodplains in monsoon is an integral part. The urban and industrial growth stressing natural resources has led to severe degradation of the rivers and floodplains, affecting the livelihoods, health, and well-being of the people.

View Article and Find Full Text PDF
Article Synopsis
  • Hispanic/Latino populations, particularly Puerto Ricans, are underrepresented in Alzheimer Disease (AD) genetics research, prompting a study to identify new AD risk loci in this group.
  • The study involved Whole Genome Sequencing and analyzed data from 648 Puerto Ricans, adjusting for various factors to ensure accurate results and inferring local ancestry.
  • Results revealed a suggestive AD risk locus on chromosome 12 and replicated several known AD genetic loci, emphasizing the need for including diverse populations in genetic studies to improve understanding of AD.
View Article and Find Full Text PDF

Background: This study used admixture mapping to prioritize the genetic regions associated with Alzheimer's disease (AD) in African American (AA) individuals, followed by ancestry-aware regression analysis to fine-map the prioritized regions.

Methods: We analyzed 10,271 individuals from 17 different AA datasets. We performed admixture mapping and meta-analyzed the results.

View Article and Find Full Text PDF

Alzheimer disease (AD) is the leading cause of dementia in the elderly and occurs in all ethnic and racial groups. The apolipoprotein E (ApoE) ε4 is the most significant genetic risk factor for late-onset AD and shows the strongest effect among East Asian populations followed by non-Hispanic white populations and has a relatively lower effect in African descent populations. Admixture analysis in the African American and Puerto Rican populations showed that the variation in ε4 risk is correlated with the genetic ancestral background local to the ApoE gene.

View Article and Find Full Text PDF

The livelihoods of millions of people living in the world's deltas are deeply interconnected with the sediment dynamics of these deltas. In particular a sustainable supply of fluvial sediments from upstream is critical for ensuring the fertility of delta soils and for promoting sediment deposition that can offset rising sea levels. Yet, in many large river catchments this supply of sediment is being threatened by the planned construction of large dams.

View Article and Find Full Text PDF

Heavy metal pollution from tanneries is a global problem in many rapidly developing economies. Effluent discharges into rivers cause serious problems for water quality, damaging ecology and threatening the livelihoods of people, especially in developing urban centres which often have a high concentration of factories. The industry intensive capital area of Bangladesh is impacted with high levels of metals pollution in rivers in the Greater Dhaka Watershed.

View Article and Find Full Text PDF

Pollution in rapidly urbanising cities and in delta systems is a serious problem that blights the lives and livelihoods of millions of people, damaging and restricting potable water supply and supplies to industry (Whitehead et al, 2015, 2018). Employing new technology based on luminescent molecular biosensors, the toxicity in the rivers around Dhaka in Bangladesh, namely the Turag, Tongi, Balu and Buriganga, has been assessed. Samples taken at 36 sites during medium and low flow conditions and during the Bishwa Ijtema Festival revealed high levels of cell toxicity, as well as high concentrations of metals, particularly aluminium, cadmium, chromium, iron, zinc, lithium, selenium and nickel.

View Article and Find Full Text PDF

The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise, increasing population, and changes in flows and nutrients from its upland catchment. With changing climate and socioeconomics there is a need to assess how the Mekong catchment will be affected in terms of the delivery of water and nutrients into the delta system. Here we apply the Integrated Catchment model (INCA) to the whole Mekong River Basin to simulate flow and water quality, including nitrate, ammonia, total phosphorus and soluble reactive phosphorus.

View Article and Find Full Text PDF

Eutrophication and anoxia are unresolved issues in many large waterbodies. Globally, management success has been inconsistent, highlighting the need to identify approaches which reliably improve water quality. We used a process-based model chain to quantify effectiveness of terrestrial nutrient control measures on in-lake nitrogen, phosphorus, chlorophyll and dissolved oxygen (DO) concentrations in Lake Simcoe, Canada.

View Article and Find Full Text PDF

Pharmaceuticals, personal care products (PPCPs), and artificial sweeteners (ASWs) are contaminants of emerging concern commonly found in the aquatic environments. In India, studies reporting environmental occurrence of these contaminants are scarce. In this study, we investigated the occurrence and distribution of 15 PPCPs and five ASWs in the river and groundwater (used untreated as drinking water) at several sites along the Ganges River.

View Article and Find Full Text PDF

The Ganga-Brahmaputra-Meghna (GBM) River System, the associated Hooghly River and the Mahanadi River System represent the largest river basins in the world serving a population of over 780 million. The rivers are of vital concern to India and Bangladesh as they provide fresh water for people, agriculture, industry, conservation and support the Delta System in the Bay of Bengal. Future changes in both climate and socio-economics have been investigated to assess whether these will alter river flows and water quality.

View Article and Find Full Text PDF

As the scientific consensus concerning global climate change has increased in recent decades, research on potential impacts of climate change on water resources has been given high importance. However in Sub-Saharan Africa, few studies have fully evaluated the potential implications of climate change to their water resource systems. The Volta River is one of the major rivers in Africa covering six riparian countries (mainly Ghana and Burkina Faso).

View Article and Find Full Text PDF

Delta systems formed by the deposition of sediments at the mouths of large catchments are vulnerable to sea level rise and other climate change impacts. Deltas often have some of the highest population densities in the world and the Mahanadi Delta in India is one of these, with a population of 39 million. The Mahanadi River is a major river in East Central India and flows through Chattisgarh and Orissa states before discharging into the Bay of Bengal.

View Article and Find Full Text PDF

The present study analyzes the water quality characteristics of the Ramganga (a major tributary of the Ganga river) using long-term (1991-2009) monthly data and applies the Integrated Catchment Model of Nitrogen (INCA-N) and Phosphorus (INCA-P) to the catchment. The models were calibrated and validated using discharge (1993-2011), phosphate (1993-2010) and nitrate (2007-2010) concentrations. The model results were assessed based on Pearson's correlation, Nash-Sutcliffe and Percentage bias statistics along with a visual inspection of the outputs.

View Article and Find Full Text PDF

Interactions between climate change and land use change might have substantial effects on aquatic ecosystems, but are still poorly understood. Using the Welsh River Wye as a case study, we linked models of water quality (Integrated Catchment - INCA) and climate (GFDL - Geophysical Fluid Dynamics Laboratory and IPSL - Institut Pierre Simon Laplace) under greenhouse gas scenarios (RCP4.5 and RCP8.

View Article and Find Full Text PDF

The application of metaldehyde to agricultural catchment areas to control slugs and snails has caused severe problems for drinking water supply in recent years. In the River Thames catchment, metaldehyde has been detected at levels well above the EU and UK drinking water standards of 0.1 μg l at many sites across the catchment between 2008 and 2015.

View Article and Find Full Text PDF

The combined indirect and direct impacts of land use change and climate change on river water quality were assessed. A land use allocation model was used to evaluate the response of the catchment land use to long-term climatic changes. Its results were used to drive a water quality model and assess the impact of climatic alterations on freshwater nitrate and phosphorus concentrations.

View Article and Find Full Text PDF

This paper considers the long-term (500year) consequences of continued acid deposition, using a small forested catchment in S. England as an example. The MAGIC acidification model was calibrated to the catchment using data for the year 2000, and run backwards in time for 200years, and forwards for 500.

View Article and Find Full Text PDF

The presence of microplastics (MPs) in the environment is a problem of growing concern. While research has focused on MP occurrence and impacts in the marine environment, very little is known about their release on land, storage in soils and sediments and transport by run-off and rivers. This study describes a first theoretical assessment of these processes.

View Article and Find Full Text PDF

The fate of persistent organic pollutants (POPs) in riverine environments is strongly influenced by hydrology (including flooding) and fluxes of sediments and organic carbon. Coupling multimedia fate models (MMFMs) and hydrobiogeochemical transport models offers unique opportunities for understanding the environmental behaviour of POPs. While MMFMs are widely used for simulating the fate and transport of legacy and emerging pollutants, they use greatly simplified representations of climate, hydrology and biogeochemical processes.

View Article and Find Full Text PDF

Managing diffuse pollution in catchments is a major issue for environmental managers planning to meet water quality standards and comply with the EU Water Framework Directive. A major source of diffuse pollution is from nitrogen, with high nitrate concentrations affecting water supplies and in-stream ecology. A dynamic, process based model of flow, nitrate and ammonium (INCA-N) has been applied to the Hampshire Avon as part of the NERC Macronutrient Cycles Programme to link upstream and downstream measurements of water chemistry.

View Article and Find Full Text PDF

Potential increases of phytoplankton concentrations in river systems due to global warming and changing climate could pose a serious threat to the anthropogenic use of surface waters. Nevertheless, the extent of the effect of climatic alterations on phytoplankton concentrations in river systems has not yet been analysed in detail. In this study, we assess the impact of a change in precipitation and temperature on river phytoplankton concentration by means of a physically-based model.

View Article and Find Full Text PDF

Pathogens are an ongoing issue for catchment water management and quantifying their transport, loss and potential impacts at key locations, such as water abstractions for public supply and bathing sites, is an important aspect of catchment and coastal management. The Integrated Catchment Model (INCA) has been adapted to model the sources and sinks of pathogens and to capture the dominant dynamics and processes controlling pathogens in catchments. The model simulates the stores of pathogens in soils, sediments, rivers and groundwaters and can account for diffuse inputs of pathogens from agriculture, urban areas or atmospheric deposition.

View Article and Find Full Text PDF