Publications by authors named "PEYRON J"

Article Synopsis
  • * Research using single-cell RNA sequencing identified a specific group of chemotherapy-resistant leukemic cells (CLCs) that are quiescent and marked by high CD44 expression, allowing them to evade treatment.
  • * The study found that these CLCs exhibit unique gene activity and enhanced E-selectin binding during relapse, suggesting potential pathways for improving prognosis and developing new therapies.
View Article and Find Full Text PDF

Pediatric T-cell Acute Lymphoblastic Leukemia (T-ALL) relapses are still associated with a dismal outcome, justifying the search for new therapeutic targets and relapse biomarkers. Using single-cell RNA sequencing (scRNAseq) data from three paired samples of pediatric T-ALL at diagnosis and relapse, we first conducted a high-dimensional weighted gene co-expression network analysis (hdWGCNA). This analysis highlighted several gene co-expression networks (GCNs) and identified relapse-associated hub genes, which are considered potential driver genes.

View Article and Find Full Text PDF

Unlabelled: Dependency on mitochondrial oxidative phosphorylation (OxPhos) is a potential weakness for leukemic stem cells (LSC) that can be exploited for therapeutic purposes. Fatty acid oxidation (FAO) is a crucial OxPhos-fueling catabolic pathway for some acute myeloid leukemia (AML) cells, particularly chemotherapy-resistant AML cells. Here, we identified cold sensitivity at 4°C (cold killing challenge; CKC4), commonly used for sample storage, as a novel vulnerability that selectively kills AML LSCs with active FAO-supported OxPhos while sparing normal hematopoietic stem cells.

View Article and Find Full Text PDF

Background & Aims: In CML, Leukemic Stem Cells (LSCs) that are insensitive to Tyrosine Kinase Inhibitors are responsible for leukemia maintenance and relapses upon TKI treatment arrest. We previously showed that downregulation of the BMI1 polycomb protein that is crucial for stem/progenitor cells self-renewal induced a CCNG2/dependent proliferation arrest leading to elimination of Chronic Myeloid Leukemia (CML) cells. Unfortunately, as of today, pharmacological inhibition of BMI1 has not made its way to the clinic.

View Article and Find Full Text PDF
Article Synopsis
  • Drug repurposing offers a promising approach for responding to COVID-19 by identifying existing medications that can counteract the effects of SARS-COV-2.
  • Using the Connectivity Map (CMap), researchers found various anti-cancer drugs that might disrupt the virus's ability to promote cell growth and division, similar to cancer cell behavior.
  • The analysis also highlighted several compounds that could affect lipid metabolism and anti-inflammatory agents, paving the way for new treatment strategies against COVID-19.
View Article and Find Full Text PDF

Knowledge about the hematopoietic niche has evolved considerably in recent years, in particular through analyzes, mouse models and the use of xenografts. Its complexity in the human bone marrow, in particular in a context of hematological malignancy, is more difficult to decipher by these strategies and could benefit from the knowledge acquired on the niches of solid tumors. Indeed, some common features can be suspected, since the bone marrow is a frequent site of solid tumor metastases.

View Article and Find Full Text PDF

Signaling, proliferation, and inflammation are dependent on K63-linked ubiquitination-conjugation of a chain of ubiquitin molecules linked via lysine 63. However, very little information is currently available about how K63-linked ubiquitination is subverted in cancer. The present study provides, for the first time, evidence that cadmium (Cd), a widespread environmental carcinogen, is a potent activator of K63-linked ubiquitination, independently of oxidative damage, activation of ubiquitin ligase, or proteasome impairment.

View Article and Find Full Text PDF

Numerous combinations of signaling pathway blockades in association with tyrosine kinase inhibitor (TKI) treatment have been proposed for eradicating leukemic stem cells (LSCs) in chronic myeloid leukemia (CML), but none are currently clinically available. Because targeting protein kinase Cδ (PKCδ) was demonstrated to eliminate cancer stem cells (CSCs) in solid tumors, we evaluated the efficacy of PKCδ inhibition in combination with TKIs for CML cells. We observed that inhibition of PKCδ by a pharmacological inhibitor, by gene silencing, or by using K562 CML cells expressing dominant-negative (DN) or constitutively active (CA) PKCδ isoforms clearly points to PKCδ as a regulator of the expression of the stemness regulator BMI1.

View Article and Find Full Text PDF

T-cell Acute Lymphoblastic Leukemia (T-ALL) is an aggressive subtype of leukemia for which important progress in treatment efficiency have been made in the past decades to reach a cure rate of 75%-80% nowadays. It is nevertheless mandatory to find new targets and active molecules for innovative therapeutic strategies as relapse is associated with a very dismal outcome. We designed an experimental workflow to highlight the conserved core pathways associated with leukemogenesis by confronting the gene expression profiles (GEPs) of human T-ALL cases to the GEP of a murine T-ALL representative model, generated by the conditional deletion of the tumor suppressor gene in T cell precursors (tPTEN-/-).

View Article and Find Full Text PDF

The human 80S ribosome is the cellular nucleoprotein nanomachine in charge of protein synthesis that is profoundly affected during cancer transformation by oncogenic proteins and provides cancerous proliferating cells with proteins and therefore biomass. Indeed, cancer is associated with an increase in ribosome biogenesis and mutations in several ribosomal proteins genes are found in ribosomopathies, which are congenital diseases that display an elevated risk of cancer. Ribosomes and their biogenesis therefore represent attractive anti-cancer targets and several strategies are being developed to identify efficient and specific drugs.

View Article and Find Full Text PDF

Arteriovenous fistulas (AVFs) are the preferred vascular access for haemodialysis of patients suffering from end-stage renal disease, a worldwide public health problem. However, they are prone to a high rate of failure due to neointimal hyperplasia and stenosis. This study aimed to determine if osteopontin (OPN) was induced in hypoxia and if OPN could be responsible for driving AVF failure.

View Article and Find Full Text PDF

Chronic Myeloid Leukemia (CML) is a disease arising in stem cells expressing the BCR-ABL oncogenic tyrosine kinase that transforms one Hematopoietic stem/progenitor Cell into a Leukemic Stem Cell (LSC) at the origin of differentiated and proliferating leukemic cells in the bone marrow (BM). CML-LSCs are recognized as being responsible for resistances and relapses that occur despite the advent of BCR-ABL-targeting therapies with Tyrosine Kinase Inhibitors (TKIs). LSCs share a lot of functional properties with Hematopoietic Stem Cells (HSCs) although some phenotypical and functional differences have been described during the last two decades.

View Article and Find Full Text PDF

GAPDH is emerging as a key player in T cell development and function. To investigate the role of GAPDH in T cells, we generated a transgenic mouse model overexpressing GAPDH in the T cell lineage. Aged mice developed a peripheral Tfh-like lymphoma that recapitulated key molecular, pathological, and immunophenotypic features of human angioimmunoblastic T cell lymphoma (AITL).

View Article and Find Full Text PDF

Metformin, a widely used anti-diabetic molecule, has attracted a strong interest in the last 10 years as a possible new anti-cancer molecule. Metformin acts by interfering with mitochondrial respiration, leading to an activation of the AMPK tumor-suppressive pathway to promote catabolic-energy saving reactions and block anabolic ones that are associated with abnormal cell proliferation. Metformin also acts at the organism level.

View Article and Find Full Text PDF

Background: Inhibitors of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in NAD biosynthesis from nicotinamide, exhibit anticancer effects in preclinical models. However, continuous exposure to NAMPT inhibitors, such as FK866, can induce acquired resistance.

Methods: We developed FK866-resistant CCRF-CEM (T cell acute lymphoblastic leukemia) and MDA MB231 (breast cancer) models, and by exploiting an integrated approach based on genetic, biochemical, and genome wide analyses, we annotated the drug resistance mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • The bone marrow microenvironment (BMME) plays a crucial role in guiding and safeguarding both healthy hematopoietic stem cells (HSCs) and leukemia-initiating cells (LICs).
  • Mitochondrial transfer, along with other communication methods like adhesion molecules and cytokines, is highlighted as a key form of interaction between these cells and the BMME.
  • The review focuses on how this mitochondrial transfer contributes to drug resistance in leukemia, suggesting that better understanding of this process could lead to new adjunctive cancer treatments.
View Article and Find Full Text PDF

Cancer cells reprogram their metabolism to optimize their growth and proliferation in the host microenvironment. For this purpose, they enhance the uptake of extracellular nutrients and deal with the metabolic waste products through the overexpression of numerous membrane proteins including amino-acid transporters (LAT1) and acid-base regulating enzymes, such as carbonic anhydrases (CAs). Here we describe the anti-tumoral effects of a new class of CAXII inhibitors, the glycosyl coumarins on T-ALL/LL cells.

View Article and Find Full Text PDF

NF-κB (Nuclear Factor Κ-light-chain-enhancer of activated B cells) transcription factors are critical regulators of immunity, stress response, apoptosis, and differentiation. Molecular defects promoting the constitutive activation of canonical and non-canonical NF-κB signaling pathways contribute to many diseases, including cancer, diabetes, chronic inflammation, and autoimmunity. In the present review, we focus our attention on the mechanisms of NF-κB deregulation in hematological malignancies.

View Article and Find Full Text PDF

Iron is an essential nutrient, acting as a catalyst for metabolic reactions that are fundamental to cell survival and proliferation. Iron complexed to transferrin is delivered to the metabolism after endocytosis via the CD71 surface receptor. We found that transformed cells from a murine PTEN-deficient T-cell lymphoma model and from T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/T-LL) cell lines overexpress CD71.

View Article and Find Full Text PDF

Many antibiotics in clinical use target the bacterial ribosome by interfering with the protein synthesis machinery. However, targeting the human ribosome in the case of protein synthesis deregulations such as in highly proliferating cancer cells has not been investigated at the molecular level up to now. Here we report the structure of the human 80S ribosome with a eukaryote-specific antibiotic and show its anti-proliferative effect on several cancer cell lines.

View Article and Find Full Text PDF

Here we demonstrate that in a niche-like coculture system, cells from both primary and cultured acute myeloid leukemia (AML) sources take up functional mitochondria from murine or human bone marrow stromal cells. Using different molecular and imaging approaches, we show that AML cells can increase their mitochondrial mass up to 14%. After coculture, recipient AML cells showed a 1.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is sustained by a subpopulation of rare leukemia-initiating cells (LIC) detected in the xenograft assay by their capacity to self-renew and to generate non-LICs in vivo The xenotransplantation model captures functional properties of LICs that have clinical prognostic value. However, the long duration of this in vivo assay has hampered its use as a prognostic tool. Here, we show, using an ex vivo coculture system, that intermediate and poor risk AML patient samples at diagnosis have a 5 to 7 times higher frequency of leukemic long-term culture-initiating cells (L-LTC-IC) compared with the good risk group.

View Article and Find Full Text PDF