Publications by authors named "PE Wolf"

We have studied homogeneous cavitation in liquid nitrogen and normal liquid helium. We monitor the fluid content in a large number of independent mesopores with an ink-bottle shape, either when the fluid in the pores is quenched to a constant pressure or submitted to a pressure decreasing at a controlled rate. For both fluids, we show that, close enough to their critical point, the cavitation pressure threshold is in good agreement with the Classical Nucleation Theory (CNT).

View Article and Find Full Text PDF

Motivated by recent experiments, we investigate the scattering properties of percolation clusters generated by numerical simulations on a three-dimensional cubic lattice. Individual clusters of given size are shown to present a fractal structure up to a scale of order of their extent, even far away from the percolation threshold p_{c}. The influence of intercluster correlations on the structure factor of assemblies of clusters selected by an invasion phenomenon is studied in detail.

View Article and Find Full Text PDF

We measured sorption isotherms for helium and nitrogen in wide temperature ranges and for a series of porous silicon samples, both native samples and samples with reduced pore mouth, so that the pores have an ink-bottle shape. Combining volumetric measurements and sensitive optical techniques, we show that, at a high temperature, homogeneous cavitation is the relevant evaporation mechanism for all samples. At a low temperature, the evaporation is controlled by meniscus recession, the detailed mechanism being dependent on the pore length and mouth reduction.

View Article and Find Full Text PDF

We report on the evaporation of hexane from porous alumina and silicon membranes. These membranes contain billions of independent nanopores tailored to an ink-bottle shape, where a cavity several tens of nanometers in diameter is separated from the bulk vapor by a constriction. For alumina membranes with narrow enough constrictions, we demonstrate that cavity evaporation proceeds by cavitation.

View Article and Find Full Text PDF

Sorption isotherm measurement is a standard method for characterizing porous materials. However, such isotherms are generally hysteretic, differing between condensation and evaporation. Quantitative measurement of pore diameter distributions requires proper identification of the mechanisms at play, a topic which has been and remains the subject of intensive studies.

View Article and Find Full Text PDF

High resolution measurements reveal that condensation isotherms of (4)He in high porosity silica aerogel become discontinuous below a critical temperature. We show that this behavior does not correspond to an equilibrium phase transition modified by the disorder induced by the aerogel structure, but to the disorder-driven critical point predicted for the athermal out-of-equilibrium dynamics of the random-field Ising model. Our results evidence the key role of nonequilibrium effects in the phase transitions of disordered systems.

View Article and Find Full Text PDF

We have investigated the formation of helium droplets in two physical situations. In the first one, droplets are atomised from superfluid or normal liquid by a fast helium vapour flow. In the second, droplets of normal liquid are formed inside porous glasses during the process of helium condensation.

View Article and Find Full Text PDF

This article evaluates the potential of capacitive measurements using flexible electrodes to access various physical quantities. These electrodes are made of a thin metallic film, typical thickness 0.2 microm, evaporated on a plastic substrate.

View Article and Find Full Text PDF

We present the first measurements of the thermal conductivity of spin-polarized normal liquid 3He. Using the rapid melting technique to produce nuclear polarizations up to 0.7, and a vibrating wire both as a heater and a thermometer, we show that, unlike the viscosity, the conductivity increases much less than predicted for s-wave scattering.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the recently proposed technique of 3He prepolarization at low temperature and high field (Kober et al. Magn Reson Med 1999; 41:1084-1087) for fast imaging of the lung. Helium-3 was cooled to 2.

View Article and Find Full Text PDF

We report on the first measurements of the polarization dependence of the specific heat of liquid 3He. Transient polarizations m of up to 70% were reached by using the rapid melting technique. The specific heat at 60-100 mK and 27 bars is found to decrease approximately as m(2), the reduction reaching at least 30% for m = 70%.

View Article and Find Full Text PDF

The first 3He nuclear magnetic resonance (NMR) experiments using low-temperature prepolarization are presented. 3He cells were polarized at 4.2 K and 4.

View Article and Find Full Text PDF

The rate of protein diffusion in bacterial cytoplasm may constrain a variety of cellular functions and limit the rates of many biochemical reactions in vivo. In this paper, we report noninvasive measurements of the apparent diffusion coefficient of green fluorescent protein (GFP) in the cytoplasm of Escherichia coli. These measurements were made in two ways: by photobleaching of GFP fluorescence and by photoactivation of a red-emitting fluorescent state of GFP (M.

View Article and Find Full Text PDF

Chromophore-assisted light inactivation (CALI) offers the only method capable of modulating specific protein activities in localized regions and at particular times. Here, we generalize CALI so that it can be applied to a wider range of tasks. Specifically, we show that CALI can work with a genetically inserted epitope tag; we investigate the effectiveness of alternative dyes, especially fluorescein, comparing them with the standard CALI dye, malachite green; and we study the relative efficiencies of pulsed and continuous-wave illumination.

View Article and Find Full Text PDF

In the few years since its gene was first cloned, the Aequorea victoria green fluorescent protein (GFP) has become a powerful tool in cell biology, functioning as a marker for gene expression, protein localization and protein dynamics in living cells. GFP variants with improved fluorescence intensity and altered spectral characteristics have been identified, but additional GFP variants are still desirable for multiple labeling experiments, protein interaction studies and improved visibility in some organisms. In particular, long-wavelength (red) fluorescence has remained elusive.

View Article and Find Full Text PDF