Like many other apicomplexan parasites, Toxoplasma gondii contains a plastid harboring key metabolic pathways, including the sulfur utilization factor (SUF) pathway that is involved in the biosynthesis of iron-sulfur clusters. These cofactors are crucial for a variety of proteins involved in important metabolic reactions, potentially including plastidic pathways for the synthesis of isoprenoid and fatty acids. It was shown previously that impairing the NFS2 cysteine desulfurase, involved in the first step of the SUF pathway, leads to an irreversible killing of intracellular parasites.
View Article and Find Full Text PDFIron-sulfur (Fe-S) clusters are one of the most ancient and ubiquitous prosthetic groups, and they are required by a variety of proteins involved in important metabolic processes. Apicomplexan parasites have inherited different plastidic and mitochondrial Fe-S clusters biosynthesis pathways through endosymbiosis. We have investigated the relative contributions of these pathways to the fitness of Toxoplasma gondii, an apicomplexan parasite causing disease in humans, by generating specific mutants.
View Article and Find Full Text PDFSoil and groundwater are key components in the sustainable management of the subsurface environment. Source contamination is one of its main threats and is commonly addressed using established remediation techniques such as in-situ chemical oxidation (ISCO), in-situ chemical reduction (ISCR; most notably using zero-valent iron [ZVI]), enhanced in-situ bioremediation (EISB), phytoremediation, soil-washing, pump-and-treat, soil vapour extraction (SVE), thermal treatment, and excavation and disposal. Decades of field applications have shown that these techniques can successfully treat or control contaminants in higher permeability subsurface materials such as sands, but achieve only limited success at sites where low permeability soils, such as silts and clays, prevail.
View Article and Find Full Text PDFElectrically assisted mitigation of coastal sediment oil pollution was simulated in floor-scale laboratory experiments using light crude oil and saline water at approximately 1/10 oil/water (O/W) mass ratio in pore fluid. The mass transport of the immiscible liquid phases was induced under constant direct current density of 2A/m(2), without water flooding. The transient pore water pressures (PWP) and the voltage differences (V) at and in between consecutive ports lined along the test specimen cell were measured over 90days.
View Article and Find Full Text PDFThe impact wave response of soil due to a ball drop is monitored on a 30.5 cm by 30.5 cm square soil box using a fiber sensor with dynamic strain sensing capability.
View Article and Find Full Text PDFZero valent iron nanoparticles (nZVI) transport for soil and groundwater remediation is slowed down or halted by aggregation or fast depletion in the soil pores. Direct electric current can enhance the transport of nZVI in low permeability soils. However operational factors, including pH, oxidation-reduction potential (ORP), voltage and ionic strength of the electrolyte can play an important role in the treatment effectiveness.
View Article and Find Full Text PDFJ Hazard Mater
November 2013
Heavy metals typically accumulate in reduced bottom sediments after being discharged into waterways by industrial and municipal processes. A laboratory experiment was conducted in order to determine if abundance of clay in the bottom sediments of a Cu-contaminated aqueous ecosystem could enhance electrolytic reduction of the heavy metal. Cu(NO3)2 · 2.
View Article and Find Full Text PDFSubsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments.
View Article and Find Full Text PDFIn recent years, several distributed sensor systems based on stimulated Brillouin scattering in optical fibers have been proposed [J. Intell. Mater.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
July 2008
This study demonstrates that by integrating electrokinetics with nanotechnology, the transport of nano-particles can be electrokinetically enhanced for subsurface remediation of tight clay soils where transport time and process efficiency may be an issue. Polymer coated dispersed nano-iron developed at Lehigh University, were used in the experiments reported here. The particles possessed positive zeta-potential below pH 8.
View Article and Find Full Text PDFEnviron Sci Technol
February 2004
The probable relation between diffuse double-layer processes and redox reactions that enhance degradation or conversion of contaminants under an applied electric field were examined in a clay medium. Kaolinite clay, precontaminated with hexavalent chromium, was the test soil medium. Analyte, containing ferrous iron, was transported through the kaolinite clay using direct electric current.
View Article and Find Full Text PDF