Publications by authors named "PALEY S"

The model organism Escherichia coli K-12 has one of the most extensively annotated genomes in terms of functional characterization, yet a significant number of genes, ∼35%, are still considered poorly characterized. Initially genes without known functional understanding were given 'y' gene names. However, due to inconsistency in changing 'y' names to non-'y' names over the years, gene name alone does not provide sufficient information as to the characterization level of genes.

View Article and Find Full Text PDF

We present a tool for multi-omics data analysis that enables simultaneous visualization of up to four types of omics data on organism-scale metabolic network diagrams. The tool's interactive web-based metabolic charts depict the metabolic reactions, pathways, and metabolites of a single organism as described in a metabolic pathway database for that organism; the charts are constructed using automated graphical layout algorithms. The multi-omics visualization facility paints each individual omics dataset onto a different "visual channel" of the metabolic-network diagram.

View Article and Find Full Text PDF
Article Synopsis
  • The Comparative Genome Dashboard is a web tool for comparing gene functions across different organisms, highlighting both similarities and differences.
  • It features a high-level graphical overview of cellular functions, with interactive panels that focus on areas like biosynthesis, energy metabolism, and transport.
  • Users can drill down into specific subsystems to access detailed comparisons, such as the capabilities for synthesizing cofactors, transporting metal ions, and responding to DNA damage.
View Article and Find Full Text PDF

The Comparative Genome Dashboard is a web-based software tool for interactive exploration of the similarities and differences in gene functions between organisms. It provides a high-level graphical survey of cellular functions, and enables the user to drill down to examine subsystems of interest in greater detail. At its highest level the Comparative Dashboard contains panels for cellular systems such as biosynthesis, energy metabolism, transport, and response to stimulus.

View Article and Find Full Text PDF

CyanoCyc is a web portal that integrates an exceptionally rich database collection of information about cyanobacterial genomes with an extensive suite of bioinformatics tools. It was developed to address the needs of the cyanobacterial research and biotechnology communities. The 277 annotated cyanobacterial genomes currently in CyanoCyc are supplemented with computational inferences including predicted metabolic pathways, operons, protein complexes, and orthologs; and with data imported from external databases, such as protein features and Gene Ontology (GO) terms imported from UniProt.

View Article and Find Full Text PDF

The Omics Dashboard is a software tool for interactive exploration and analysis of metabolomics, transcriptomics, proteomics, and multi-omics datasets. Organized as a hierarchy of cellular systems, the Dashboard at its highest level contains graphical panels for the full range of cellular systems, including biosynthesis, energy metabolism, and response to stimulus. Thus, the Dashboard top level surveys the state of the cell across a broad range of key systems in a single screen.

View Article and Find Full Text PDF

EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of .

View Article and Find Full Text PDF

The Pathway Tools (PTools) software provides a suite of capabilities for storing and analyzing integrated collections of genomic and metabolic information in the form of organism-specific Pathway/Genome Databases (PGDBs). A microbial community is represented in PTools by generating a PGDB from each metagenome-assembled genome (MAG). PTools computes a metabolic reconstruction for each organism, and predicts its operons.

View Article and Find Full Text PDF

Animals colonized with a defined microbiota represent useful experimental systems to investigate microbiome function. The altered Schaedler flora (ASF) represents a consortium of eight murine bacterial species that have been used for more than 4 decades where the study of mice with a reduced microbiota is desired. In contrast to germ-free mice, or mice colonized with only one or two species, ASF mice show the normal gut structure and immune system development.

View Article and Find Full Text PDF

To understand and engineer plant metabolism, we need a comprehensive and accurate annotation of all metabolic information across plant species. As a step towards this goal, we generated genome-scale metabolic pathway databases of 126 algal and plant genomes, ranging from model organisms to crops to medicinal plants (https://plantcyc.org).

View Article and Find Full Text PDF

The EcoCyc model-organism database collects and summarizes experimental data for K-12. EcoCyc is regularly updated by the manual curation of individual database entries, such as genes, proteins, and metabolic pathways, and by the programmatic addition of results from select high-throughput analyses. Updates to the Pathway Tools software that supports EcoCyc and to the web interface that enables user access have continuously improved its usability and expanded its functionality.

View Article and Find Full Text PDF

Background: The Metabolic Network Explorer is a new addition to the BioCyc.org website and the Pathway Tools software suite that supports the interactive exploration of metabolic networks. Any metabolic network visualization tool must by necessity show only a subset of all possible metabolite connections, or the results will be visually overwhelming.

View Article and Find Full Text PDF

Updating genome databases to reflect newly published molecular findings for an organism was hard enough when only a single strain of a given organism had been sequenced. With multiple sequenced strains now available for many organisms, the challenge has grown significantly because of the still-limited resources available for the manual curation that corrects errors and captures new knowledge. We have developed a method to automatically propagate multiple types of curated knowledge from genes and proteins in one genome database to their orthologs in uncurated databases for related strains, imposing several quality-control filters to reduce the chances of introducing errors.

View Article and Find Full Text PDF

Metabolomics, synthetic biology, and microbiome research demand information about organism-scale metabolic networks. The convergence of genome sequencing and computational inference of metabolic networks has enabled great progress toward satisfying that demand by generating metabolic reconstructions from the genomes of thousands of sequenced organisms. Visualization of whole metabolic networks is critical for aiding researchers in understanding, analyzing, and exploiting those reconstructions.

View Article and Find Full Text PDF

Motivation: Biological systems function through dynamic interactions among genes and their products, regulatory circuits and metabolic networks. Our development of the Pathway Tools software was motivated by the need to construct biological knowledge resources that combine these many types of data, and that enable users to find and comprehend data of interest as quickly as possible through query and visualization tools. Further, we sought to support the development of metabolic flux models from pathway databases, and to use pathway information to leverage the interpretation of high-throughput data sets.

View Article and Find Full Text PDF

MetaCyc (MetaCyc.org) is a comprehensive reference database of metabolic pathways and enzymes from all domains of life. It contains 2749 pathways derived from more than 60 000 publications, making it the largest curated collection of metabolic pathways.

View Article and Find Full Text PDF

Background: High-throughput experiments can bring to light associations between genes, proteins and/or metabolites, many of which will be explainable by existing knowledge. Our aim is to speed elucidation of such explanations and, in some cases, find explanations that scientists might otherwise overlook.

Results: We describe the MultiOmics Explainer, a new tool within the Pathway Tools software suite that leverages what is known about an organism's metabolic and regulatory network to suggest explanations for the results of omics experiments.

View Article and Find Full Text PDF

Microbial genome web portals have a broad range of capabilities that address a number of information-finding and analysis needs for scientists. This article compares the capabilities of the major microbial genome web portals to aid researchers in determining which portal(s) are best suited to their needs. We assessed both the bioinformatics tools and the data content of BioCyc, KEGG, Ensembl Bacteria, KBase, IMG, and PATRIC.

View Article and Find Full Text PDF

EcoCyc is a bioinformatics database available at EcoCyc.org that describes the genome and the biochemical machinery of K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of .

View Article and Find Full Text PDF

BioCyc.org is a microbial genome Web portal that combines thousands of genomes with additional information inferred by computer programs, imported from other databases and curated from the biomedical literature by biologist curators. BioCyc also provides an extensive range of query tools, visualization services and analysis software.

View Article and Find Full Text PDF

https://BioCyc.org , https://EcoCyc.org , https://MetaCyc.

View Article and Find Full Text PDF

MetaCyc (https://MetaCyc.org) is a comprehensive reference database of metabolic pathways and enzymes from all domains of life. It contains more than 2570 pathways derived from >54 000 publications, making it the largest curated collection of metabolic pathways.

View Article and Find Full Text PDF

The Omics Dashboard is a software tool for interactive exploration and analysis of gene-expression datasets. The Omics Dashboard is organized as a hierarchy of cellular systems. At the highest level of the hierarchy the Dashboard contains graphical panels depicting systems such as biosynthesis, energy metabolism, regulation and central dogma.

View Article and Find Full Text PDF

Studies suggest that inflammation is involved in the pathophysiology of depression. The present study examined the effects of the commonly used antidepressant escitalopram, in comparison with a novel herbal treatment (NHT) consisted of Crataegus pinnatifida, Triticum aestivum, Lilium brownii and Fructus Ziziphus jujuba, on cytokine and behavioral responses to an immune challenge. Escitalopram augmented lipopolysaccharide-induced tumor necrosis factor (TNF)-α peripheral secretion and induced a faster kinetics of interleukin-1β secretion, while marginally reducing sickness behavior.

View Article and Find Full Text PDF