Objectives: Artificial intelligence (AI) is thought to improve lesion detection. However, a lack of knowledge about human performance prevents a comparative evaluation of AI and an accurate assessment of its impact on clinical decision-making. The objective of this work is to quantitatively evaluate the ability of humans to detect focal cortical dysplasia (FCD), compare it to state-of-the-art AI, and determine how it may aid diagnostics.
View Article and Find Full Text PDFMaternal obesity is associated with an increased risk of hepatic metabolic dysfunction for both mother and offspring and targeted interventions to address this growing metabolic disease burden are urgently needed. This study investigates whether maternal exercise (ME) could reverse the detrimental effects of hepatic metabolic dysfunction in obese dams and their offspring while focusing on the AMP-activated protein kinase (AMPK), representing a key regulator of hepatic metabolism. In a mouse model of maternal western-style-diet (WSD)-induced obesity, we established an exercise intervention of voluntary wheel-running before and during pregnancy and analyzed its effects on hepatic energy metabolism during developmental organ programming.
View Article and Find Full Text PDFBackground: Myocardial fibrosis is a hallmark of cardiac remodeling and functionally involved in heart failure development, a leading cause of deaths worldwide. Clinically, no therapeutic strategy is available that specifically attenuates maladaptive responses of cardiac fibroblasts, the effector cells of fibrosis in the heart. Therefore, our aim was to develop novel antifibrotic therapeutics based on naturally derived substance library screens for the treatment of cardiac fibrosis.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2018
Objective: TRPM7 (transient receptor potential cation channel, subfamily M, member 7) is a ubiquitously expressed bifunctional protein comprising a transient receptor potential channel segment linked to a cytosolic α-type serine/threonine protein kinase domain. TRPM7 forms a constitutively active Mg and Ca permeable channel, which regulates diverse cellular processes in both healthy and diseased conditions, but the physiological role of TRPM7 kinase remains largely unknown.
Approach And Results: Here we show that point mutation in TRPM7 kinase domain deleting the kinase activity in mice ( ) causes a marked signaling defect in platelets.
Background: New therapeutic approaches to improve cardiac contractility without severe risk would improve the management of acute heart failure. Increasing systolic sodium influx can increase cardiac contractility, but most sodium channel activators have proarrhythmic effects that limit their clinical use. Here, we report the cardiac effects of a novel positive inotropic peptide isolated from the toxin of the Black Judean scorpion that activates neuronal tetrodotoxin-sensitive sodium channels.
View Article and Find Full Text PDF