Microcystis aeruginosa is a ubiquitous freshwater cyanobacterium best known for producing hepatotoxic microcystins; however, this common bloom-forming species also produces myriad biologically active and potentially deleterious other metabolites. Our understanding of the effects of these non-microcystin metabolites on fish is limited. In this study, we evaluated cytotoxicity of extracellular metabolites harvested from both microcystin-producing (MC+) and non-producing (MC-) strains of M.
View Article and Find Full Text PDFBackground: Current acceptable chemical exposure levels (e.g., tolerable daily intake) are mainly based on animal experiments, which are costly, time-consuming, considered non-ethical by many, and may poorly predict adverse outcomes in humans.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
February 2024
In toxicology and regulatory testing, the use of animal methods has been both a cornerstone and a subject of intense debate. To continue this discourse a panel and audience representing scientists from various sectors and countries convened at a workshop held during the 12th World Congress on Alternatives and Animal Use in the Life Sciences (WC-12). The ensuing discussion focused on the scientific and ethical considerations surrounding the necessity and responsibility of defending the creation of new animal data in regulatory testing.
View Article and Find Full Text PDFRead-across (RAx) translates available information from well-characterized chemicals to a substance for which there is a toxicological data gap. The OECD is working on case studies to probe general applicability of RAx, and several regulations (e.g.
View Article and Find Full Text PDFNonclinical tests are considered crucial for understanding the safety of investigational medicines. However, the effective translation from nonclinical to human application is limited and must be improved. Drug development stakeholders are working to advance human-based in vitro and in silico methods that may be more predictive of human efficacy and safety in vivo because they enable scientists to model the direct interaction of drugs with human cells, tissues, and biological processes.
View Article and Find Full Text PDFObesity and type 2 diabetes mellitus (T2DM) have reached pandemic proportions worldwide, and considerable research efforts have been dedicated to investigating disease pathology and therapeutic options. The two hallmark features of T2DM, insulin resistance and pancreatic dysfunction, have been studied extensively by using various animal models. Despite the knowledge acquired from such models, particularly mechanistic discoveries that sometimes mimic human T2DM mechanisms or pathways, many details of human T2DM pathogenesis remain unknown, therapeutic options remain limited, and a cure has eluded research.
View Article and Find Full Text PDFMuch of Alzheimer disease (AD) research has been traditionally based on the use of animals, which have been extensively applied in an effort to both improve our understanding of the pathophysiological mechanisms of the disease and to test novel therapeutic approaches. However, decades of such research have not effectively translated into substantial therapeutic success for human patients. Here we critically discuss these issues in order to determine how existing human-based methods can be applied to study AD pathology and develop novel therapeutics.
View Article and Find Full Text PDFHeart failure remains a leading cause of death and it is a major cause of morbidity and mortality affecting tens of millions of people worldwide. Despite decades of extensive research conducted at enormous expense, only a handful of interventions have significantly impacted survival in heart failure. Even the most widely prescribed treatments act primarily to slow disease progression, do not provide sustained survival advantage, and have adverse side effects.
View Article and Find Full Text PDFAnimal models of Alzheimer's disease (AD) have been extensively utilized for decades in an effort to elucidate the pathophysiological mechanisms of this disease and to test novel therapeutic approaches. However, research success has not effectively translated into therapeutic success for human patients. This translational failure is partially due to the overuse of animal models that cannot accurately recapitulate human AD etiopathogenesis or drug responses and the inadequate use of human-relevant research methods.
View Article and Find Full Text PDFAmong the most widely used animal models in obesity-induced type 2 diabetes mellitus (T2DM) research are the congenital leptin- and leptin receptor-deficient rodent models. These include the leptin-deficient ob/ob mice and the leptin receptor-deficient db/db mice, Zucker fatty rats, Zucker diabetic fatty rats, SHR/N-cp rats, and JCR:LA-cp rats. After decades of mechanistic and therapeutic research schemes with these animal models, many species differences have been uncovered, but researchers continue to overlook these differences, leading to untranslatable research.
View Article and Find Full Text PDFInsulin resistance is a hallmark of type 2 diabetes. In an effort to understand and treat this condition, researchers have used genetic manipulation of mice to uncover insulin signaling pathways and determine the effects of their perturbation. After decades of research, much has been learned, but the pathophysiology of insulin resistance in human diabetes remains controversial, and treating insulin resistance remains a challenge.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) has reached epidemic proportions worldwide and animal models mimicking human T2DM are widely used to study mechanisms of disease and to develop pharmacotherapeutics. Over the last three decades, rodent models of T2DM have yielded more than 50 publications per month; however, many details of human T2DM pathogenesis remain unclear, and means of preventing disease progression remain elusive. This review investigates the reasons for this translational discrepancy by analyzing the experimental evidence from rodent models of T2DM.
View Article and Find Full Text PDFG protein coupled receptors play crucial roles in mediating cellular responses to external stimuli, and increasing evidence suggests that they function as multiple units comprising homo/heterodimers and hetero-oligomers. Adenosine and β-adrenergic receptors are co-expressed in numerous tissues and mediate important cellular responses to the autocoid adenosine and sympathetic stimulation, respectively. The present study was undertaken to examine whether adenosine A1ARs heterodimerize with β1- and/or β2-adrenergic receptors (β1R and β2R), and whether such interactions lead to functional consequences.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2011
The presence of sex differences in myocardial β-adrenergic responsiveness is controversial, and limited studies have addressed the mechanism underlying these differences. Studies were performed using isolated perfused hearts from male, intact female and ovariectomized female mice to investigate sex differences and the effects of ovarian hormone withdrawal on β-adrenergic receptor function. Female hearts exhibited blunted contractile responses to the β-adrenergic receptor agonist isoproterenol (ISO) compared with males but not ovariectomized females.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2010
The mammalian myocardium expresses four adenosine receptor (AR) subtypes: A(1)AR, A(2a)AR, A(2b)AR, and A(3)AR. The A(1)AR is well known for its profound antiadrenergic effects, but the roles of other AR subtypes in modulating contractility remain inconclusive. Thus, the objective of this study was to determine the direct and indirect effects of A(2a)AR and A(2b)AR on cardiac contractility.
View Article and Find Full Text PDFThe sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs) play a crucial role in regulating free cytosolic Ca(2+) concentration in diverse cell types. It has been shown that recombinant SERCA3, when measured in heterologous systems, exhibits low apparent affinity for Ca(2+); however, Ca(2+) affinity of native SERCA3 in an endogenous setting has not been examined. Such a measurement is complicated, because SERCA3 is always coexpressed with the housekeeping isoform SERCA2b.
View Article and Find Full Text PDF