We present a class of visible-light-driven molecular motors based on barbituric acid. Due to a serendipitous reactivity we observed during their synthesis, these motors possess a tertiary stereogenic centre on the upper half, characterised by a hydroxy group. Using a combination of femto- and nanosecond transient absorption spectroscopy, molecular dynamics simulations and low-temperature H NMR experiments we found that these motors operate similarly to push-pull second-generation overcrowded alkene-based molecular motors.
View Article and Find Full Text PDFCoupled motion is ubiquitous in Nature as it forms the base for the direction, amplification, propagation, and synchronization of movement. Herein, we present experimental proof for the coupling of the rocking motion of a dihydroanthracene stator moiety with the light-induced rotational movement of an overcrowded alkene-based molecular motor. The motor was desymmetrized, introducing two different alkyl substituents to the stator part of the molecular scaffold, resulting in the formation of two diastereomers with opposite axial chirality.
View Article and Find Full Text PDFSynthetic molecular machines hold tremendous potential to revolutionize chemical and materials sciences. Their autonomous motion controlled by external stimuli allows to develop smart materials whose properties can be adapted on command. For the realisation of more complex molecular machines, it is crucial to design building blocks whose properties can be controlled by multiple orthogonal stimuli.
View Article and Find Full Text PDFIntroduction: Enhanced prenatal/postnatal care home visiting programs for Medicaid-insured women have significant positive impacts on care and health outcomes. However, enhanced prenatal care participation rates are typically low, enrolling <30% of eligible women. This study investigates the impacts of a population-based systems approach on timely enhanced prenatal care participation and other healthcare utilization.
View Article and Find Full Text PDF