Publications by authors named "P a Lear"

Objective: A previous genome-wide association study linked overexpression of an ATP-binding cassette transporter, ABCC5, in humans with a susceptibility to developing type 2 diabetes with age. Specifically, ABCC5 gene overexpression was shown to be strongly associated with increased visceral fat mass and reduced peripheral insulin sensitivity. Currently, the role of ABCC5 in diabetes and obesity is unknown.

View Article and Find Full Text PDF

Background: Acromegaly is produced by excess growth hormone secreted by a pituitary adenoma of somatotroph cells (ACRO). First-line therapy, surgery and adjuvant therapy with somatostatin analogs, fails in 25% of patients. There is no predictive factor of resistance to therapy.

View Article and Find Full Text PDF

Two-pore channels (TPCs or TPCNs) are novel voltage-gated ion channels that have been postulated to act as Ca2+ and/or Na+ channels expressed exclusively in acidic organelles such as endosomes and lysosomes. TPCNs participate in the regulation of diverse biological processes and recently have been proposed to be involved in the pathophysiology of metabolic disorders such as obesity, fatty liver disease and type 2 diabetes mellitus. Due to the importance of these pathologies in the development of cardiovascular diseases, we aimed to study the possible role of two-pore channel 1 (TPCN1) in the regulation of cardiac metabolism.

View Article and Find Full Text PDF

Key Points: Two-pore channels (TPCs) were identified as a novel family of endolysosome-targeted calcium release channels gated by nicotinic acid adenine dinucleotide phosphate, as also as intracellular Na(+) channels able to control endolysosomal fusion, a key process in autophagic flux. Autophagy, an evolutionarily ancient response to cellular stress, has been implicated in the pathogenesis of a wide range of cardiovascular pathologies, including heart failure. We report direct evidence indicating that TPCs are involved in regulating autophagy in cardiomyocytes, and that TPC knockout mice show alterations in the cardiac lysosomal system.

View Article and Find Full Text PDF