Publications by authors named "P Zirogiannis"

The X-linked Alport syndrome (ATS) is caused by mutations in COL4A5 and exhibits a widely variable expression. Usually ATS is heralded with continuous microhematuria which rapidly progresses to proteinuria, hypertension and chronic or end-stage renal disease (ESRD) by adolescence, frequently accompanied by sensorineural deafness and ocular complications. Milder forms of ATS also exist.

View Article and Find Full Text PDF

Dialysis-related amyloidosis is related to the inefficient removal of beta(2)-microglobulin (beta(2)-m) that is mainly responsible for the formation of amyloid fibrils deposited on the joints and in the heart, blood vessels and digestive system. Magnetically assisted hemodialysis (MAHD) can be used for the prevention of dialysis-related amyloidosis. MAHD is based on ferromagnetic nanoparticle-targeted binding substance conjugates (FN-TBS Cs) that should be administered to the patient before the dialysis session.

View Article and Find Full Text PDF

Background: The utilization of modern achievements from nanobiotechnology has resulted in novel modalities for renal replacement therapy. For conventional intermittent haemodialysis (HD), sophisticated membranes are currently being manufactured that guarantee selective removal of target toxins. These membranes have a narrow pore-size distribution that is focused around a mean value at the nanometre level.

View Article and Find Full Text PDF

The in vitro utilization of biocompatible ferromagnetic nanoparticles (BFNs) in hemodialysis (HD), routinely used today for the treatment of end stage renal disease (ESRD), is introduced in this work. The proposed strategy is termed magnetically assisted hemodialysis (MAHD) and it aims to become a more efficient development of conventional HD. The method is based on the production of biocompatible ferromagnetic nanoparticles-targeted binding substances conjugates (BFNs-TBSs Cs) constructed of BFNs and specifically designed TBSs that should have high affinity and binding capacity for target toxic substances (TTSs) which must be removed from the ESRD patient subjected to HD.

View Article and Find Full Text PDF