We present a novel plasmonic hydrogen sensor consisting of an array of gold nanodisks produced by lithography. The size, height, and spacing of the disks were optimized using finite element simulation to generate a sharp localized surface plasmon resonance peak in the near-infrared wavelength region. The reported results show the possibility of developing an optical gas sensors-based bare Au nanostructures operating at a low temperature.
View Article and Find Full Text PDFWe present a theoretical and experimental study of a plasmonic nanoelectrode architecture that is able to inject bunches of hot electrons into an aqueous environment. In this approach, electrons are accelerated in water by ponderomotive forces up to energies capable of exciting or ionizing water molecules. This ability is enabled by the nanoelectrode structure (extruding out of a metal baseplate), which allows for the production of an intense plasmonic hot spot at the apex of the structure while maintaining the electrical connection to a virtually unlimited charge reservoir.
View Article and Find Full Text PDFSurface plasmon waves carry an intrinsic transverse spin, which is locked to its propagation direction. Apparently, when a singular plasmonic mode is guided on a conic surface this spin-locking may lead to a strong circular polarization of the far-field emission. Specifically, a plasmonic vortex excited on a flat metal surface propagates on an adiabatically tapered gold nanocone where the mode accelerates and finally beams out from the tip apex.
View Article and Find Full Text PDFWe demonstrate the generation of far-field propagating optical beams with a desired orbital angular momentum by using a smooth optical-mode transformation between a plasmonic vortex and free-space Laguerre-Gaussian modes. This is obtained by means of an adiabatically tapered gold tip surrounded by a spiral slit. The proposed physical model, backed up by the numerical study, brings about an optimized structure that is fabricated by using a highly reproducible secondary electron lithography technique.
View Article and Find Full Text PDFOptical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level.
View Article and Find Full Text PDF