The circadian clock in tendon regulates the daily rhythmic synthesis of collagen-I and the appearance and disappearance of small-diameter collagen fibrils in the extracellular matrix. How the fibrils are assembled and removed is not fully understood. Here, we first showed that the collagenase, membrane type I-matrix metalloproteinase (MT1-MMP, encoded by Mmp14), is regulated by the circadian clock in postnatal mouse tendon.
View Article and Find Full Text PDFEarly lethality of mice with complete deletion of the matrix metalloproteinase MMP14 emphasized the proteases' pleiotropic functions. MMP14 deletion in adult dermal fibroblasts (MMP14) caused collagen type I accumulation and upregulation of MMP3 expression. To identify the compensatory role of MMP3, mice were generated with MMP3 deletion in addition to MMP14 loss in fibroblasts.
View Article and Find Full Text PDFMaintenance of skin homeostasis is a highly regulated and complex process involving a continuous remodeling by several extracellular matrix proteases, including metalloproteinases. The expression and activity of all metalloproteinases are under strict control, and their deregulation is often associated with diseases or chronic conditions, thereby being considered popular targets for developing new therapeutics. This review will highlight metalloproteinases of the MMP and ADAM families with functions in dermal homeostasis and give some insights into the mechanisms regulating their activity and expression.
View Article and Find Full Text PDF