The demand for natural gas has led to the development of techniques used to access unconventional oil and natural gas (UOG) resources, due to the novelty of UOG, the potential impacts to freshwater ecosystems are not fully understood. We used a dual pronged approach to study the effects of UOG development on microbial biodiversity and function via a laboratory microcosm experiment and a survey study of streams with and without UOG development within their watersheds. The microcosm experiment simulated stream contamination with produced water, a byproduct of UOG operations, using sediment collected from one high water-quality stream and two low water-quality streams.
View Article and Find Full Text PDFHydraulic fracturing of deep shale formations generates large volumes of wastewater that must be managed through treatment, reuse, or disposal. Produced wastewater liberates formation-derived radionuclides and contains previously uncharacterized organohalides thought to be generated within the shale well, both posing unknown toxicity to human and ecological health. Here, we assess the toxicity of 42 input media and produced fluid samples collected from four wells in the Utica formation and Marcellus Shale using two distinct endpoint screening assays.
View Article and Find Full Text PDFAluminum is an important aquatic contaminant due to its ubiquity, toxicity and low regulatory discharge limits. Aluminum is mobilized in mining related, acidic drainage and is commonly a regulated pollutant. However, while aquatic toxicity studies and toxicity criteria are based on dissolved aluminum(Ald), discharge levels are, for statutory reasons, based on total recoverable aluminum (Alt).
View Article and Find Full Text PDFEnviron Toxicol Chem
November 2015
Runoff from watersheds altered by mountaintop mining in the Appalachian region (USA) is known to pollute headwater streams, yet regional-scale assessments of water quality have focused on salinization and selenium. The authors conducted a comprehensive survey of inorganic contaminants found in 170 stream segments distributed across a spectrum of historic and contemporary human land use. Principal component analysis identified 3 important dimensions of variation in water chemistry that were significantly correlated with contemporary surface mining (principal component 1: elevated dominant ions, sulfate, alkalinity, and selenium), coal geology and legacy mines (principal component 2: elevated trace metals), and residential development (principal component 3: elevated sodium and chloride).
View Article and Find Full Text PDFHydraulic fracturing (HF) has been used with horizontal drilling to extract gas and natural gas liquids from source rock such as the Marcellus Shale in the Appalachian Basin. Horizontal drilling and HF generates large volumes of waste water known as flowback. While inorganic ion chemistry has been well characterized, and the general increase in concentration through the flowback is widely recognized, the literature contains little information relative to organic compounds and radionuclides.
View Article and Find Full Text PDF