Recent studies have demonstrated that it is possible to decode and synthesize various aspects of acoustic speech directly from intracranial measurements of electrophysiological brain activity. In order to continue progressing toward the development of a practical speech neuroprosthesis for the individuals with speech impairments, better understanding and modeling of imagined speech processes are required. The present study uses intracranial brain recordings from participants that performed a speaking task with trials consisting of overt, mouthed, and imagined speech modes, representing various degrees of decreasing behavioral output.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Recent studies have shown it is possible to decode and synthesize speech directly using brain activity recorded from implanted electrodes. While this activity has been extensively examined using electrocorticographic (ECoG) recordings from cortical surface grey matter, stereotactic electroen-cephalography (sEEG) provides comparatively broader coverage and access to deeper brain structures including both grey and white matter. The present study examines the relative and joint contributions of grey and white matter electrodes for speech activity detection in a brain-computer interface.
View Article and Find Full Text PDF