Background/aims: Global liquid chromatography mass spectrometry (LC-MS) profiling in a Thai population has previously identified a urinary metabolic signature in -induced cholangiocarcinoma (CCA), primarily characterised by disturbance in acylcarnitine, bile acid, steroid, and purine metabolism. However, the detection of thousands of analytes by LC-MS in a biological sample in a single experiment potentially introduces false discovery errors. To verify these observed metabolic perturbations, a second validation dataset from the same population was profiled in a similar fashion.
View Article and Find Full Text PDFPhenotypic diversity in urinary metabolomes of different geographical populations has been recognized recently. In this study, urinary metabolic signatures from Western (United Kingdom) and South-East Asian (Thai) cholangiocarcinoma patients were characterized to understand spectral variability due to host carcinogenic processes and/or exogenous differences (nutritional, environmental and pharmaceutical). Urinary liquid chromatography mass spectroscopy (LC-MS) spectral profiles from Thai (healthy = 20 and cholangiocarcinoma = 14) and UK cohorts (healthy = 22 and cholangiocarcinoma = 10) were obtained and modelled using chemometric data analysis.
View Article and Find Full Text PDFBackground: A distinct serum metabonomic pattern has been previously revealed to be associated with various forms of liver disease. Here, we aimed to apply mass spectrometry to obtain serum metabolomic profiles from individuals with cholangiocarcinoma and benign hepatobiliary diseases to gain an insight into pathogenesis and search for potential early-disease biomarkers.
Methods: Serum samples were profiled using a hydrophilic interaction liquid chromatography platform, coupled to a mass spectrometer.
Background: Human infection with , a carcinogenic liver fluke inhabiting the biliary tree, is endemic in Southeast Asia. Chronic infection is associated with a fatal complication, cholangiocarcinoma (CCA), a late-presenting and aggressive malignancy. Currently, annual mortality rates from CCA mirror trends in incidence, due in part to limited availability of efficient prognostic and early diagnostic biomarkers.
View Article and Find Full Text PDFMetabolic profiling, metabonomics and metabolomics are terms coined in the late 1990s as they emerged as the newest '' technology at the time. This line of research enquiry uses spectroscopic analytical platforms, which are mainly nuclear magnetic resonance spectroscopy and mass spectrometry (MS), to acquire a snapshot of metabolites, the end products of a complex biological system. Metabolic profiling enables the detection, quantification and characterisation of metabolites in biofluids, cells and tissues.
View Article and Find Full Text PDF