Nuclear bodies are protein- and RNA-containing structures that participate in a wide range of processes critical to genome function. Molecular self-organization is thought to drive nuclear body formation, but whether this occurs stochastically or via an ordered, hierarchical process is not fully understood. We addressed this question using RNAi and proteomic approaches in Drosophila melanogaster to identify and characterize novel components of the histone locus body (HLB), a nuclear body involved in the expression of replication-dependent histone genes.
View Article and Find Full Text PDFMetazoan replication-dependent histone mRNAs are the only nonpolyadenylated cellular mRNAs. Formation of the histone mRNA 3' end requires the U7 snRNP, which contains Lsm10 and Lsm11, and FLASH, a processing factor that binds Lsm11. Here, we identify sequences in Drosophila FLASH (dFLASH) that bind Drosophila Lsm11 (dLsm11), allow localization of dFLASH to the nucleus and histone locus body (HLB), and participate in histone pre-mRNA processing in vivo.
View Article and Find Full Text PDFThioredoxin reductases function in regulating cellular redox and function through their substrate, thioredoxin, in the proper folding of enzymes and redox regulation of transcription factor activity. These enzymes are overexpressed in certain tumors and cancer cells and down-regulated in apoptosis and may play a role in regulating cell growth. Mammalian thioredoxin reductases contain a selenocysteine residue, encoded by a UGA codon, as the penultimate carboxyl-terminal amino acid.
View Article and Find Full Text PDFThe DNA sequence encoding a novel human thioredoxin reductase has been determined. The protein is predicted to have 524 amino acids including a conserved -Cys-Val-Asn-Val-Gly-Cys catalytic site and a selenocysteine containing C-terminal -Gly-Cys-SeCys-Gly. The predicted molecular mass is 56.
View Article and Find Full Text PDFThioredoxin is a redox protein found overexpressed in some human tumors. Thioredoxin is secreted by tumor cells and enhances the sensitivity of the cancer cells to other growth factors. Redox activity is essential for stimulation of cell growth by thioredoxin.
View Article and Find Full Text PDF