Cables formed by head-to-tail polymerization of tropomyosin, localized along the length of sarcomeric and cytoskeletal actin filaments, play a key role in regulating a wide range of motile and contractile processes. The stability of tropomyosin cables, their interaction with actin filaments and the functional properties of the resulting co-filaments are thought to be affected by N-terminal acetylation of tropomyosin. Here, we present high-resolution structures of cables formed by acetylated and unacetylated Schizosaccharomyces pombe tropomyosin ortholog Tpm.
View Article and Find Full Text PDFRegulatory T cells (T cells) hold promise for sustainable therapy of immune disorders. Recent advancements in chimeric antigen receptor development and genome editing aim to enhance the specificity and function of T cells. However, impurities and functional instability pose challenges for the development of safe gene-edited T cell products.
View Article and Find Full Text PDF