Publications by authors named "P Woods"

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.

View Article and Find Full Text PDF

Stable ^{205}Tl ions have the lowest known energy threshold for capturing electron neutrinos (ν_{e}) of E_{ν_{e}}≥50.6  keV. The Lorandite Experiment (LOREX), proposed in the 1980s, aims at obtaining the longtime averaged solar neutrino flux by utilizing natural deposits of Tl-bearing lorandite ores.

View Article and Find Full Text PDF

Arginine is a conditionally essential amino acid with known roles in protein production, nitric oxide synthesis, biosynthesis of proline and polyamines, and regulation of intracellular signaling pathways. Arginine biosynthesis and catabolism have been linked to TGF-β-induced activation of fibroblasts in the context of pulmonary fibrosis; however, a thorough study on the metabolic and signaling roles of arginine in the process of fibroblast activation has not been conducted. Here, we used metabolic dropouts and labeling strategies to determine how activated fibroblasts utilize arginine.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is characterized by intermittent hypoxic environments at the cellular level and is an independent risk factor for the development of cardiovascular disease. Endothelial cell (EC) dysfunction precedes the development of cardiovascular disease; however, the mechanisms by which ECs respond to these intermittent hypoxic events are poorly understood. To better understand EC responses to hypoxia, we examined the effects of sustained hypoxia (SH) and intermittent hypoxia (IH) on the activation of HIF-1α in ECs.

View Article and Find Full Text PDF

HIF-1α plays a critical role in shaping macrophage phenotype and effector function. We have previously shown that tissue-resident alveolar macrophages (TR-AMs) have extremely low glycolytic capacity at steady-state, but can shift toward glycolysis under hypoxic conditions. Here, using inducible HIF-1α knockout ( ) TR-AMs and bone marrow-derived macrophages (BMDMs) and show that TR-AM HIF-1α is required for the glycolytic shift under prolyl hydroxylase inhibition, but is dispensable at steady-state for inflammatory effector function.

View Article and Find Full Text PDF