Objectives: To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials need progression-enriched patient populations. To assess whether the application of machine learning results in patient selection enrichment, we developed a machine learning recruitment strategy targeting progressive patients and validated it in the IMI-APPROACH knee osteoarthritis prospective study.
Design: We designed a two-stage recruitment process supported by machine learning models trained to rank candidates by the likelihood of progression.
Objectives: The IMI-APPROACH knee osteoarthritis study used machine learning (ML) to predict structural and/or pain progression, expressed by a structural (S) and pain (P) predicted-progression score, to select patients from existing cohorts. This study evaluates the actual 2-year progression within the IMI-APPROACH, in relation to the predicted-progression scores.
Methods: Actual structural progression was measured using minimum joint space width (minJSW).
Objectives: Osteoarthritis (OA) patient stratification is an important challenge to design tailored treatments and drive drug development. Biochemical markers reflecting joint tissue turnover were measured in the IMI-APPROACH cohort at baseline and analysed using a machine learning approach in order to study OA-dominant phenotypes driven by the endotype-related clusters and discover the driving features and their disease-context meaning.
Method: Data quality assessment was performed to design appropriate data preprocessing techniques.
Objectives: To describe the relations between baseline clinical characteristics of the Applied Public-Private Research enabling OsteoArthritis Clinical Headway (IMI-APPROACH) participants and their predicted probabilities for knee osteoarthritis (OA) structural (S) progression and/or pain (P) progression.
Methods: Baseline clinical characteristics of the IMI-APPROACH participants were used for this study. Radiographs were evaluated according to Kellgren and Lawrence (K&L grade) and Knee Image Digital Analysis.
Conventional inclusion criteria used in osteoarthritis clinical trials are not very effective in selecting patients who would benefit from a therapy being tested. Typically majority of selected patients show no or limited disease progression during a trial period. As a consequence, the effect of the tested treatment cannot be observed, and the efforts and resources invested in running the trial are not rewarded.
View Article and Find Full Text PDF