Publications by authors named "P Weisman-Shomer"

Nitrosylation of cysteines residues (S-nitrosylation) mediates many of the cellular effects of nitric oxide in normal and diseased cells. Recent research indicates that S-nitrosylation of certain proteins could play a role in tumor progression and responsiveness to therapy. However, the protein targets of S-nitrosylation in cancer cells remain largely unidentified.

View Article and Find Full Text PDF

S-nitrosylation, the coupling of a nitric oxide moiety to a reactive cysteine residue to form an S-nitrosothiol (SNO), is an important posttranslational mechanism for regulating protein activity. Growing evidence indicates that hyper-S-nitrosylation may contribute to cellular dysfunction associated with various human diseases. It is also increasingly appreciated that thioredoxin and thioredoxin reductase play significant roles in the cellular catabolism of SNO and protection from nitrosative stress.

View Article and Find Full Text PDF

Background: The thioredoxin/thioredoxin reductase system, which is best known for its essential role in antioxidant defense and redox homeostasis, is increasingly implicated in the regulation of multiple cellular signaling pathways. In the present study, we asked if the thioredoxin system in macrophages might regulate toll-like receptor 4 (TLR4)-dependent gene expression and consequent responses.

Methods: Using microarray analysis we analyzed the effect of auranofin, a highly potent and specific inhibitor of thioredoxin reductase, on the transcriptional program activated in J774 macrophages by the TLR4 agonist, lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Protein S-nitrosylation, the nitric oxide-mediated posttranslational modification of cysteine residues, has emerged as an important regulatory mechanism in diverse cellular processes. Yet, knowledge about the S-nitrosoproteome in different cell types and cellular contexts is still limited and many questions remain regarding the precise roles of protein S-nitrosylation and denitrosylation. Here we present a novel strategy to identify reversibly nitrosylated proteins.

View Article and Find Full Text PDF