Brain astrocyte glycogenolysis is regulated in part by the second messenger adenosine 3'5'-cyclic monophosphate (cAMP). Hypothalamic astrocyte glycogen metabolism shapes glucose counterregulation, under the control of glucose transporter-2 (GLUT2), a plasma membrane glucose carrier and sensor. Hypothalamic astrocyte cAMP is subject to neurotransmitter control, but effects of nutrient cues on this messenger are unclear.
View Article and Find Full Text PDFGammaherpesviruses are species-specific, ubiquitous pathogens that establish lifelong infection in their hosts and are associated with cancers, including B cell lymphomas. Type I and II interferons (IFNs) are critical for the control of acute and chronic gammaherpesvirus infection. However, the cell type-specific role of IFN signaling during natural infection is poorly defined and is masked by the altered viral pathogenesis observed in hosts with global IFN deficiencies.
View Article and Find Full Text PDFGlucose transporter-2 (GLUT2), a unique high capacity/low affinity, highly efficient membrane transporter and sensor, regulates hypothalamic astrocyte glucose phosphorylation and glycogen metabolism. The phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway participates in glucose homeostasis, but its sensitivity to glucose-sensory cues is unknown. Current research used a hypothalamic astrocyte primary culture model to investigate whether glucoprivation causes PI3K/Akt/mTOR pathway activation in one or both sexes by GLUT2-dependent mechanisms.
View Article and Find Full Text PDFRecent studies documented regulation of hypothalamic astrocyte mitogen-activated protein kinase (MAPK) pathways, including p38, by the plasma membrane glucose carrier/sensor glucose transporter-2 (GLUT2). Sex-specific GLUT2 control of p38 phosphorylation was observed, but effects on individual p38 family protein profiles were not investigated. Current research employed an established primary astrocyte culture model, gene knockdown tools, and selective primary antisera against p38-alpha, p38-beta, p38-gamma, and p38-delta isoforms to investigate whether GLUT2 governs expression of one or more of these variants in a glucose-dependent manner.
View Article and Find Full Text PDF