Publications by authors named "P W Hoen"

Background: Inclusion Body Myositis is an acquired muscle disease. Its pathogenesis is unclear due to the co-existence of inflammation, muscle degeneration and mitochondrial dysfunction. We aimed to provide a more advanced understanding of the disease by combining multi-omics analysis with prior knowledge.

View Article and Find Full Text PDF

T cell-based immunotherapies targeting antigens on tumor cells have shown efficacy as anti-cancer treatments. While neoantigens are created by somatic mutations acquired during tumorigenesis, allogeneic stem cell transplantation as treatment for hematological malignancies exploits minor histocompatibility antigens encoded by genetic differences between patients and donors. Screening methods to predict neoantigens and minor histocompatibility antigens typically consider only conventional antigens created by nonsynonymous mutations or polymorphisms coding for amino acid changes in canonical open reading frames (ORFs).

View Article and Find Full Text PDF

Motivation: We are witnessing an enormous growth in the amount of molecular profiling (-omics) data. The integration of multi-omics data is challenging. Moreover, human multi-omics data may be privacy-sensitive and can be misused to de-anonymize and (re-)identify individuals.

View Article and Find Full Text PDF
Article Synopsis
  • Paediatric Leigh syndrome (LS) is a severe neurodegenerative disorder caused by mutations in the NDUFS4 gene, which affects mitochondrial function, and currently has no effective treatments.
  • Researchers used whole-body Ndufs4 knockout (KO) mice to analyze differences in brain proteomes between these mice and wildtype mice, identifying variations across different brain regions.
  • Findings highlighted reduced levels of critical mitochondrial components in specific brain areas and suggested that attempts to stimulate certain metabolic pathways could be harmful, prompting the need for new therapeutic strategies for managing LS.
View Article and Find Full Text PDF

The human neural retina is a complex tissue with abundant alternative splicing and more than 10% of genetic variants linked to inherited retinal diseases (IRDs) alter splicing. Traditional short-read RNA-sequencing methods have been used for understanding retina-specific splicing but have limitations in detailing transcript isoforms. To address this, we generated a proteogenomic atlas that combines PacBio long-read RNA-sequencing data with mass spectrometry and whole genome sequencing data of three healthy human neural retina samples.

View Article and Find Full Text PDF