Cheek pouches have evolved from the oral cavity in rodents and act as temporary food storage repositories. There are two types of opening, internal and external. Details about the complex cutaneous muscles controlling the pouches have still not been fully elucidated.
View Article and Find Full Text PDFBackground: The aim of the present study is to provide the first large data set on vertebral formulae and proportions, and examine their relationship with different locomotive modes in colugos (Dermoptera), tree shrews (Scandentia), and rodents (Rodentia), which have been considered less variable because they were thought to have a plesiomorphic number of 19 thoracolumbar vertebrae.
Materials And Methods: The data included 33 colugos and 112 tree shrews, which are phylogenetically sister taxa, and 288 additional skeletons from 29 other mammalian species adapted to different locomotive modes, flying, gliding, arboreal, terrestrial, digging, and semi-aquatic habitats.
Results: The following results were obtained: (1) intra-/interspecies variability and geographical variation in thoracic, lumbar, and thoracolumbar counts were present in two gliding colugo species and 12 terrestrial/arboreal tree shrew species; (2) in our examined mammals, some aerodynamic mammals, such as colugos, southern flying squirrels, scaly-tailed squirrels, and bats, showed exceptionally high amounts of intraspecific variation of thoracic, lumbar, and thoracolumbar counts, and sugar gliders and some semi-aquatic rodents also showed some variation; (3) longer thoracic and shorter lumbar vertebrae were typically shared traits among the examined mammals, except for flying squirrels (Pteromyini) and scaly-tailed squirrels (Anomaluridae).
A long-standing issue in squirrel evolution and development is the origin of the styliform cartilage of flying squirrels, which extends laterally from the carpus to support the gliding membrane (patagium). Because the styliform cartilage is one of the uniquely specialized structures permitting gliding locomotion, the knowledge of its origin and surrounding transformation is key for understanding their aerodynamic evolution. The developmental study that would definitely answer this question would be difficult due to the rarity of embryological material.
View Article and Find Full Text PDFBecause pangolins are unique mammals with a body and limbs almost entirely sheathed in hard keratinous overlapping scales and with digging and climbing abilities, the shoulder girdle muscles may differ significantly from those of other mammals including the partially osteoderm-clad armadillos. Therefore, we conducted a functional anatomical study of the shoulder girdle muscles in Chinese pangolins (Manis pentadactyla pentadactyla, Pholidota) and some armadillo species (Dasypodidae). Our CT scans revealed that the pangolin's overlapping scales are hard structures completely encasing the limbs.
View Article and Find Full Text PDF