Publications by authors named "P W BRAUNSTEIN"

When aiming at the direct use of CO for the preparation of advanced/value-added materials, the synthesis of CO/olefin copolymers is very appealing but challenging. The δ-lactone 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one (EVP), synthesized by telomerization of CO with 1,3-butadiene, is a promising monomer. However, its chemoselective ring-opening polymerization (ROP) is hampered by unfavorable thermodynamics and the competitive polymerization of highly reactive C=C double bonds under usual conditions.

View Article and Find Full Text PDF

Controlling the packing of olefinic molecules in crystals is essential for triggering solid-state [2 + 2] photocycloaddition reactions and the synthesis of photocontrolled smart materials. Herein, we report the stepwise photodimerization-triggered photopolymerization of two triene coordination polymers (CPs), {[Zn(2-BBA)(tpeb)]·0.5CHCN} (, 2-HBBA = 2-bromobenzoic acid, tpeb = 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene) and {[Zn(3-BBA)(tpeb)]·CHCN)} (, 3-HBBA = 3-bromobenzoic acid).

View Article and Find Full Text PDF

Deuteration of amine compounds has been widely of concern because of its practical role in organic reaction mechanisms and drug research; however, only limited deuteration label methods are accessible with DO as a deuterium source. Herein, we propose a convenient deuteration protocol, including preparing D by the AlGa activation method, using PtRu nanowires as catalysts, and utilizing the elementary step in the couple reaction involving an imine unit, to realize the rapid preparation of a secondary amine with a diversified deuteration label. The self-coupling between nitriles not only provides a symmetric secondary amine with four α-D atoms but also produces high-valued ND in an atomic-economic way.

View Article and Find Full Text PDF

Carbon materials have great potential for applications in energy, biology, and environment due to their excellent chemical and physical properties. Their preparation by carbonization methods encounters limitations and the carbon loss during pyrolysis in the form of gaseous molecules results in low yield of carbon materials. Herein a low-energy (600 °C) and high-yield (82 wt.

View Article and Find Full Text PDF

Zwitterionic thiolate ligands have the potential to introduce novel assembly modes and functions for noble metal clusters. However, their utilization in the synthesis of silver clusters remains understudied, particularly for the clusters containing reductive Ag(0) species. In this article, we report the first synthesis of a mixed-valence silver(0/I) cluster protected by zwitterionic Tab as thiolate ligands (Tab = 4-(trimethylammonio)benzenethiolate), denoted as [Ag(Tab)](PF)·16CHOH·6EtO (·16CHOH·6EtO), alongside an Ag(I) cluster [Ag(Tab)(PhCOO)(MeCN)(HO)](PF)·11MeCN (·11MeCN).

View Article and Find Full Text PDF